[1] Yang J, Dong H G, Li P, et al. Analysis of microstructural evolution and mechanical properties in the simulated heat-affected zone of Fe-23Mn-0.45C-1.5Al high-Mn austenitic steel[J]. Journal of Materials Research and Technology, 2022, 20: 1110-1126. [2] Sohn S S, Hong S, Lee J H, et al. Effects of Mn and Al contents on cryogenic-temperature tensile and Charpy impact properties in four austenitic high-Mn steels[J]. Acta Materialia, 2015, 100: 39-52. [3] Park M, Kang M, Park G W, et al. The effects of post weld heat treatment for welded high-Mn austenitic steels using the submerged arc welding method[J]. Journal of Materials Research and Technology, 2022, 18: 4497-4512. [4] Wang Y W, Wang H H, Su Y H, et al. Cryogenic impact fracture behavior of a high-Mn austenitic steel using electron backscatter diffraction and neutron Bragg-edge transmission imaging[J]. Materials Science and Engineering A, 2023, 887: 145768. [5] 张福成, 陈 晨, 刘 帅, 等. 高锰钢研究进展: 成分、组织和性能调控[J]. 钢铁, 2024, 59(3): 1-18, 78. Zhang Fucheng, Chen Chen, Liu Shuai, et al. A review on high manganese steels: Control of chemical composition, microstructure and properties[J]. Iron and Steel, 2024, 59(3): 1-18, 78. [6] Tang L, Wang L, Wang M, et al. Synergistic deformation pathways in a TWIP steel at cryogenic temperatures: in situ neutron diffraction[J]. Acta Materialia, 2020, 200: 943-958. [7] Tao X, Thomas J C, Ao Q S, et al. Active screen plasma nitriding of Fe-24Mn-2Al-0.45C TWIP steel: Microstructure evolution and a synergistic selective oxidation mechanism[J]. Acta Materialia, 2022, 241: 118418. [8] Ren J K, Chen Q Y, Chen J, et al. On mechanical properties of welded joint in novel high-Mn cryogenic steel in terms of microstructural evolution and solute segregation[J]. Metals, 2020, 10(4): 478. [9] 陈 俊, 刘 宁, 刘振宇, 等. LNG储罐用高锰钢合金化设计及强韧性[J]. 中国冶金, 2023, 33(6): 73-80. Chen Jun, Liu Ning, Liu Zhenyu, et al. Alloying design as well as strength and toughness of high Mn steels for LNG tank building[J]. China Metallurgy, 2023, 33(6): 73-80. [10] Luo Q, Wang H H, Li G Q, et al. On mechanical properties of novel high-Mn cryogenic steel in terms of SFE and microstructural evolution[J]. Materials Science and Engineering A, 2019, 753: 91-98. [11] Chen J, Ren J K, Liu Z Y. Deformation microstructures as well as strengthening and toughening mechanisms of low-density high Mn steels for cryogenic applications[J]. Journal of Materials Research and Technology, 2021, 13: 947-961. [12] 齐祥羽, 严 玲, 王长顺, 等. LNG储罐用高锰钢中厚板生产技术开发[J]. 轧钢, 2023, 40(2): 24-29. Qi Xiangyu, Yan Ling, Wang Changshun, et al. Production technology development of high manganese steel plate for liquefied natural gas tanks[J]. Steel Rolling, 2023, 40(2): 24-29. [13] Zhang S C, Wang H H, Wang Y W, et al. Study on the novel high manganese austenitic steel welded joints by arc welding for cryogenic applications of LNG tanks[J]. Materials, 2023, 16(6): 2381. [14] 于洪军, 程福超, 马泽天, 等. 不同水韧处理工艺下铌微合金化高锰钢的组织演变和力学性能[J]. 金属热处理, 2022, 47(4): 151-154. Yu Hongjun, Cheng Fuchao, Ma Zetian, et al. Microstructure evolution and mechanical properties of Nb-alloyed high manganese steel under different water toughening processes[J]. Heat Treatment of Metals, 2022, 47(4): 151-154. [15] 孙士斌, 陈文聪, 王东胜, 等. 固溶处理对新型全奥氏体高锰低温钢微观组织、力学性能及摩擦性能的影响[J]. 摩擦学报, 2024, 44(5): 655-665. Sun Shibin, Chen Wencong, Wang Dongsheng, et al. Effect of solution treatment on wear resistance of a new type of austenitic high manganese low temperature steel[J]. Tribology, 2024, 44(5): 655-665. [16] 杨 壹, 刘让贤, 杨浩坤, 等. 固溶温度对轻质高锰钢组织及性能的影响[J]. 金属热处理, 2023, 48(8): 113-117. Yang Yi, Liu Rangxian, Yang Haokun, et al. Effect of solution temperature on microstructure and properties of lightweight high manganese steel[J]. Heat Treatment of Metals, 2023, 48(8): 113-117. [17] Kang S, Jung Y S, Jun J H, et al. Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe-18Mn-0.6C-1.5Al TWIP steel[J]. Materials Science and Engineering A, 2010, 527: 745-751. [18] 杨 江. 低温高锰钢焊接热影响区组织演变与力学性能研究[D]. 大连: 大连理工大学, 2022. Yang Jiang. Microstructural evolution and mechanical properties in heat-affected zone of cryogenic high-Mn steel[D]. Dalian: Dalian University of Technology, 2022. [19] Chen J, Ren J K, Liu Z Y, et al. Interpretation of significant decrease in cryogenic-temperature Charpy impact toughness in a high manganese steel[J]. Materials Science and Engineering A, 2018, 737: 158-165. [20] Jeong S, Lee Y C, Park G, et al. Phase transformation and the mechanical characteristics of heat-affected zones in austenitic Fe-Mn-Al-Cr-C lightweight steel during post-weld heat treatment[J]. Materials Characterization, 2021, 177: 111150. [21] Chen P, Li X, Yi H. The κ-carbides in low-density Fe-Mn-Al-C steels: A review on their structure, precipitation and deformation mechanism[J]. Metals, 2020, 10: 1021-1035. [22] Kim K W, Park S J, Moon J, et al. Characterization of microstructural evolution in austenitic Fe-Mn-Al-C lightweight steels with Cr content[J]. Materials Characterization, 2020, 170: 110717. [23] Lejcek P, Hofmann S. Thermodynamics and structural aspects of grain boundary segregation[J]. Critical Reviews in Solid State and Materials Sciences, 1995, 20: 1-85. [24] Dong R F, Li J S, Zhang T B, et al. Elements segregation and phase precipitation behavior at grain boundary in a Ni-Cr-W based superalloy[J]. Materials Characterization, 2016, 122: 189-196. [25] 郭倩颖, 李彦默, 陈 斌, 等. 高温时效处理对S31042耐热钢组织和蠕变性能的影响[J]. 金属学报, 2021, 57(1): 82-94. Guo Qianying, Li Yanmo, Chen Bin, et al. Effect of high-temperature ageing on microstructure and creep properties of S31042 heat-resistant steel[J]. Acta Metallurgica Sinica, 2021, 57(1): 82-94. |