[1] 赵 卓. 高锰钢铸件氧化膜缺陷的防止[J]. 现代制造技术与装备, 2018(3): 162-163. Zhao Zhuo. Prevention of oxide film defects in high manganese steel casting[J]. Modern Manufacturing Technology and Equipment, 2018(3): 162-163. [2] 杨进德. 热处理工艺对超高锰钢组织与力学性能的影响[J]. 热加工工艺, 2023, 52(16): 123-125. Yang Jinde. Effects of heat treatment process on microstructure and mechanical properties of super-high manganese steel[J]. Hot Working Technology, 2023, 52(16): 123-125. [3] Shen S, Xie P, Wu C. Temperature dependence of mechanical properties and deformation mechanism of Fe-25Mn-3Al-3Si alloy at high strain rate[J]. Materials Science and Engineering A, 2023, 872: 144912. [4] 颜晓博. 钒、钛对高锰钢显微组织、力学性能和耐磨性能的影响[D]. 广州: 暨南大学, 2018. [5] 李树索, 陈希杰. 超高锰钢加工硬化及耐磨性的研究[J]. 钢铁研究学报, 1997, 9(4): 38-41. Li Shusuo, Chen Xijie. Work hardening and wearability of super-high manganese steel[J]. Journal of Iron and Steel Research, 1997, 9(4): 38-41. [6] Yuan X, Yao Y, Chen L. High-temperature oxidation behavior of a high manganese austenitic steel Fe-25Mn-3Cr-3Al-0.3C-0.01N[J]. Acta Metallurgica Sinica (English Letters), 2014, 27: 401-406. [7] 李智丽, 岳 楠, 靳 燕. 高锰奥氏体钢的热处理试验研究[J]. 包钢科技, 2022, 48(5): 1-4. Li Zhili, Yue Nan, Jin Yan. Experimental study on heat treatment of high manganese austenitic steel[J]. Science and Technology of Baotou Steel, 2022, 48(5): 1-4. [8] Park S H, Chung I S, Kim T W. Characterization of the high-temperature oxidation behavior in Fe-25Mn-1.5Al-0.5C alloy[J]. Oxidation of Metals, 1998, 49: 349-371. [9] Sundararajan T, Kuroda S, Kawakita J, et al. High temperature corrosion of nanoceria coated 9Cr-1Mo ferritic steel in air and steam[J]. Surface and Coatings Technology, 2006, 201(6): 2124-2130. [10] 吴 刚. 超超临界火电用新型奥氏体耐热钢高温氧化性能研究[D]. 镇江: 江苏大学, 2016. Wu Gang. Study on the high temperature oxidation performance of new type austenitic heat resistant steel for ultra supercritical thermal power[D]. Zhenjiang: Jiangsu University, 2016. [11] 宋明明, 门超奇, 李建立, 等. 温度对高锰高铝钢氧化动力学规律的影响[J]. 钢铁, 2023, 58(4): 138-147. Song Mingming, Men Chaoqi, Li Jianli, et al. Effect of temperature on oxidation kinetics of high Mn-high Al steel[J]. Iron and Steel, 2023, 58(4): 138-147. [12] 侯阿龙, 黄贞益. 含Si高锰高铝低密度钢Mn28Al11Si的高温氧化特性[J]. 材料保护, 2018, 51(11): 29-33. Hou Along, Huang Zhenyi. High temperature oxidation characteristics of Si-contained high-Mn and high-Al low-density steel Mn28Al11Si[J]. Materials Protection, 2018, 51(11): 29-33. [13] 谌 康, 蔡文河, 杜双明, 等. 喷丸对马氏体耐热钢高温蒸汽氧化行为的影响[J]. 金属热处理, 2021, 46(2): 66-73. Chen Kang, Cai Wenhe, Du Shuangming, et al. Effect of shot peening on high-temperature steam oxidation behavior of martensitic heat-resistant steel[J]. Heat Treatment of Metals, 2021, 46(2): 66-73. [14] 冷德平, 章小峰, 曹 燕, 等. 高Al低密度钢的高温氧化行为[J]. 钢铁研究学报, 2015, 27(3): 54-59. Leng Deping, Zhang Xiaofeng, Cao Yan, et al. High-temperature oxidation behavior of low density steel with high Al content[J]. Journal of Iron and Steel Research, 2015, 27(3): 54-59. [15] Epifano E, Monceau D. Ellingham diagram: A new look at an old tool[J]. Corrosion Science, 2023, 217: 111113. [16] Aghaeian S, Sloof W G, Mol J M C, et al. Initial high-temperature oxidation behavior of Fe-Mn binaries in air: The kinetics and mechanism of oxidation[J]. Oxidation of Metals, 2022, 98(1): 217-237. [17] Zhang D, Liu Y, Li H, et al. High temperature oxidation behavior and microstructure evolution of medium Mn steel[J]. Surfaces and Interfaces, 2024, 46: 104139. [18] 张 伟, 徐国辉, 郭献军. 内氧化对渗铝钢氧化动力学的影响[J]. 腐蚀科学与防护技术, 2005, 17(4): 227-229. Zhang Wei, Xu Guohui, Guo Xianjun. Effect of internal oxidation in diffusion layer on oxidation kinetics of aluminizing steel[J]. Corrosion Science and Protection Technology, 2005, 17(4): 227-229. [19] Zhang X, Silva da C C, Liu C, et al. Selective oxidation of ternary Fe-Mn-Si alloys during annealing process[J]. Corrosion Science, 2020, 174: 108859. [20] Mao W, Hendrikx R W A, Sloof W G. Prediction of oxide phases formed upon internal oxidation of advanced high-strength steels[J]. Oxidation of Metals, 2018, 89: 531-549. [21] 袁 清. 低碳含Si钢高温氧化行为及网格状Fe2SiO4/FeO形成机理研究[D]. 武汉: 武汉科技大学, 2019. Yuan Qing.Research on the high-temperature oxidation behavior of low carbon silicon-containing steels and the formation mechanism of net-like Fe2SiO4/FeO[D]. Wuhan: Wuhan University of Science and Technology, 2019. [22] 郭 涛, 黄 峰, 胡 骞, 等. 9Ni钢铸坯在900~1250 ℃空气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889. Guo Tao, Huang Feng, Hu Qian, et al. Oxidation kinetics of 9Ni steel billet at high temperature[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(4): 882-889. [23] 王福祥. Fe-Ni合金高温氧化行为及耐蚀性研究[D]. 沈阳: 东北大学, 2016. Wang Fuxiang. Study on high temperature oxidation behavior and corrosion resistance of Fe-Ni alloy steel[D]. Shenyang: Northeastern University, 2016. |