[1] 郭艺勇. 齿轮钢淬透性预报及质量控制研究[D]. 沈阳: 东北大学, 2008. [2] 张显武. 35CrMnSiA钢淬透性优化研究[D]. 昆明: 昆明理工大学, 2022. [3] 黄 瑞, 赵四新, 黄宗泽. 硼对铬锰钼系含硼调质钢淬透性的影响[J]. 钢铁研究学报, 2021, 33(5): 437-442. Huang Rui, Zhao Sixin, Huang Zongze. Effects of boron on hardenability for Cr-Mn-Mo quenched-tempered steel containing boron[J]. Journal of Iron and Steel Research, 2021, 33(5): 437-442. [4] 赵广迪, 臧喜民, 王 博, 等. B对A514GrQ齿条钢淬透性影响的数值模拟及实验验证[J]. 材料热处理学报, 2025, 46(6): 179-189. Zhao Guangdi, Zang Ximin, Wang Bo, et al. Numerical simulation and experimental verification of effect of B on hardenability of A514GrQ rack steel[J]. Transactions of Materials and Heat Treatment, 2025, 46(6): 179-189. [5] 阮士朋. 高品质含硼冷镦钢的组织和性能调控[D]. 北京: 北京科技大学, 2020. [6] Dong G B, Li X C, Zhao J X, et al. Machine learning guided methods in building chemical composition-hardenability model for wear-resistant steel[J]. Materials Today: Communications, 2020, 24: 36-42. [7] 赵艺琪, 聂小龙, 赵四新, 等. 基于ELM的齿轮钢淬透性预测模型[J]. 金属热处理, 2022, 47(3): 227-233. Zhao Yiqi, Nie Xiaolong, Zhao Sixin, et al. Predicting model of gear steel hardenability based on extreme learning machine[J]. Heat Treatment of Metals, 2022, 47(3): 227-233. [8] 孙宜强. Cr含量对65Mn钢淬透性的影响[J]. 金属热处理, 2020, 45(7): 163-166. Sun Yiqiang. Effect of Cr content on hardenability of 65Mn steel[J]. Heat Treatment of Metals, 2020, 45(7): 163-166. [9] 陈文杰, 尉文超, 王毛球, 等. Nb微合金化对20CrN1MoH齿轮钢淬透性的影响[J]. 材料热处理学报, 2023, 44(7): 134-140. Chen Wenjie, Wei Wenchao, Wang Maoqiu, et al. Effect of Nb microalloying on hardenability of 20CrNiMoH gear steel[J]. Transactions of Materials and Heat Treatment, 2023, 44(7): 134-140. [10] 凌 鑫, 朱 萍, 李博鹏, 等. Ti元素对碳素结构钢淬透性的影响[J]. 物理测试, 2023, 41(1): 12-15. Ling Xin, Zhu Ping, Li Bopeng, et al. Effect of Ti on hardenability of carbon structural steel[J]. Physics Examination and Testing, 2023, 41(1): 12-15. [11] Yi Yanliang, Xing Jiandong, Jiang Hongwan, et al. Effect of Ni content on microstructure, mechanical properties, and abrasion behavior of Fe-B-C alloy[J]. Tribology Transactions, 2023, 66(2): 238-248. [12] Quan Guozheng, Zhang Pu, Ma Yaoyao, et al. Characterization of grain growth behaviors by BP-ANN and Sellars models for nickle-base superalloy and their comparisons[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(9): 2435-2448. [13] 金光灿, 李 锦, 罗一平. 部分奥氏体化和完全奥氏体化铁素体/马氏体双相钢的CCT曲线[J]. 机械工程材料, 2015, 39(5): 27-32. Jin Guangcan, Li Jin, Luo Yiping. CCT diagram of ferrite/martensite dual-phase steel with part austenitizing and complete austenitizing[J]. Materials for Mechanical Engineering, 2015, 39(5): 27-32. [14] 黄伟涛. 低碳硼钢的奥氏体晶粒度和淬透性[J]. 特殊钢, 1983(5): 11-19. Huang Weitao. Austenite grain size and hardenability of low carbon boron steels[J]. Special Steel, 1983(5): 11-19. [15] 屈小波, 安金敏, 王 林, 等. 汽车用齿轮钢16MnCrS5热处理变形机理[J]. 金属学报, 2024, 20(5): 1-19. Qu Xiaobo, An Jinmin, Wang Lin, et al. Quenching deformation of the 16MnCrS5 gear steel for automobile[J]. Acta Metallurgica Sinica, 2024, 20(5): 1-19. [16] 臧 岩, 王建军. Cr-Ni-Mo系齿轮钢端淬过程模拟及淬透性预测[J]. 金属热处理, 2022, 47(2): 257-261. Zang Yan, Wang Jianjun. Simulation of end quenching process and prediction of hardenability of Cr-Ni-Mo gear steel[J]. Heat Treatment of Metals, 2022, 47(2): 257-261. [17] Mohammed A, Tuomas A, Tun N, et al. Effect of Mo and Mo+Nb additions on the phase transformation and microstructure of a developed low-carbon Cr-Ni-Mn-B ultrahigh-strength steels with a preceding hot deformation[J]. Materials Science Forum, 2023, 26(7): 19-27. [18] Bai Jie, Jin Shenbao, Liang Chuang, et al. Microstructural origins for quench cracking of a boron steel: Boron distribution[J]. Materials Characterization, 2022, 190: 68-74. [19] Hwang B, Suh D W, Kim S J. Austenitizing temperature and hardenability of low-carbon boron steels[J]. Scripta Materialia, 2011, 64(12): 1118-1120. |