[1] 董 瀚, 曹文全, 时 捷, 等. 第3代汽车钢的组织与性能调控技术[J]. 钢铁, 2011, 46(6): 1-11. Dong Han, Cao Wenquan, Shi Jie, et al. Microstructure and performance control technology of the 3rd generation auto sheet steels[J]. Iron and Steel, 2011, 46(6): 1-11. [2] 林 翠, 陈三娟, 肖志阳. 含SO2大气中湿度对低碳钢腐蚀行为的影响[J]. 机械工程材料, 2012, 11(1): 16-22. Lin Cui, Chen Sanjuan, Xiao Zhiyang. Effect of humidity on corrosion behavior of low carbon steel in atmosphere containing SO2[J]. Materials for Mechanical Engineering, 2012, 11(1): 16-22. [3] 欧阳辉, 郑晓芬, 程 浩. 高强钢结构抗火性能研究现状[J]. 结构工程师, 2022, 38(6): 202-213. Ouyang Hui, Zheng Xiaofen, Cheng Hao. Research progress of fire resistance design theory of high strength steel structures[J]. Structural Engineers, 2022, 38(6): 202-213. [4] 闫志刚, 赵欣欣, 徐向军. 沪通长江大桥Q500qE钢的适用性研究[J]. 中国铁道科学, 2017, 38(3): 40-45. Yan Zhigang, Zhao Xinxin, Xu Xiangjun. Study on applicability of Q500qE steel for Hutong Yangtze River bridge[J]. China Railway Science, 2017, 38(3): 40-45. [5] 崔文暄, 李文卿, 王有铭, 等. 低碳钢控制轧制中的组织与性能[J]. 北京钢铁学院学报, 1980(4): 47-56. Cui Wenxuan, Li Wenqing, Wang Youming, et al. Microstructure and properties of low carbon steel in controlled rolling[J]. Journal of Beijing Iron and Steel Institute, 1980(4): 47-56. [6] 叶高奇. 回火时间对马氏体钢氢脆敏感性的影响[J]. 钢铁钒钛, 2022, 43(3): 185-190. Ye Gaoqi. Effect of tempering time on hydrogen embrittlement sensitivity of martensitic steel[J]. Iron Steel Vanadium Titanium, 2022, 43(3): 185-190. [7] Zhang F C, Zheng C L, Lü B, et al. Effects of hydrogen on the properties of bainitic steel crossing[J]. Engineering Failure Analysis, 2009, 16: 1461-1467. [8] Zheng C L, Dan R, Zhang F C, et al. Effects of retained austenite and hydrogen on the rolling contact fatigue behaviours of carbide-free bainitic steel[J]. Materials Science and Engineering A, 2014, 594: 364-371. [9] Chang L C. The rolling/sliding wear performance of high silicon carbide-free bainitic steels[J]. Wear, 2005, 258: 730-743. [10] 谌 康, 夏 彬, 徐 乐, 等. 2000 MPa级马氏体钢的氢脆敏感性[J]. 材料热处理学报, 2017, 38(8): 76-82. Chen Kang, Xia Bin, Xu Le, et al. Hydrogen embrittlement susceptibility of 2000 MPa grade martensitic steels[J]. Transactions of Materials and Heat Treatment, 2017, 38(8): 76-82. [11] 陈连生, 张雷雨, 杨子旋, 等. 微合金元素Cu及等温温度对低碳硅锰钢氢扩散行为的影响[J]. 表面技术, 2020, 49(8): 45-54. Chen Liansheng, Zhang Leiyu, Yang Zixuan, et al. Effect of micro-alloying element Cu and isothermal temperature on hydrogen diffusion behavior of low carbon Si-Mn steel[J]. Surface Technology, 2020, 49(8): 45-54. [12] 夏 禹, 史 文. 含钒TWIP钢氢致滞后断裂现象的研究[J]. 上海金属, 2014, 36(2): 18-22. Xia Yu, Shi Wen. Hydrogen-induced delayed failure of TWIP steel with vanadium addition[J]. Shanghai Metals, 2014, 36(2): 18-22. [13] 张福成, 吕 博, 张 明, 等. 全贝氏体钢辙叉及其制造方法: CN102936700A[P]. 2013-02-20. [14] 郑春雷, 张福成, 吕 博, 等. 辙叉用贝氏体钢的氢脆特性及去氢退火工艺[J]. 材料热处理学报, 2008, 29(2): 71-75. Zheng Chunlei, Zhang Fucheng, Lü Bo, et al. Susceptibility to hydrogen embrittlement and dehydrogenation annealing process of bainite steel used for crossing[J]. Transactions of Materials and Heat Treatment, 2008, 29(2): 71-75. [15] Park S J, Hwang B, Lee K H, et al. Microstructure and tensile behavior of duplex low-density steel containing 5mass% aluminum[J]. Scripta Materialia, 2013, 68(6): 365-369. [16] 米振莉, 王 东, 江海涛. Al对Fe-18Mn-0.6C钢延迟断裂性能的影响[J]. 材料热处理学报, 2015, 36(S2): 129-135. Mi Zhenli, Wang Dong, Jiang Haitao. Effect of Al on delayed fracture performance of Fe-18Mn-0.6C steel[J]. Transactions of Materials and Heat Treatment, 2015, 36(S2): 129-135. [17] 白 瑞, 杜云飞, 贺秀丽, 等. Al含量对高锰高铝轻质钢组织和力学性能的影响[J]. 金属热处理, 2024, 49(8): 48-52. Bai Rui, Du Yunfei, He Xiuli, et al. Effect of Al content on microstructure and mechanical properties of high manganese and high aluminum light steel[J]. Heat Treatment of Metals, 2024, 49(8): 48-52. [18] 李金许, 王 伟, 周 耀, 等. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458. Li Jinxu, Wang Wei, Zhou Yao, et al. Research progress on hydrogen embrittlement of advanced high-strength steels for automotive[J]. Acta Metallurgica Sinica, 2020, 56(4): 444-458. [19] Nanninga N, Grochowsi J, Heldt L, et al. Role of microstructure, composition and hardness in resisting hydrogen embrittlement of fastener grade steels[J]. Corrosion Science, 2010, 52(4): 1237-1246. [20] 李大赵, 庄治华, 申丽媛, 等. 先进高强钢微观组织调控研究现状及发展趋势[J]. 金属热处理, 2019, 44(5): 12-17. Li Dazhao, Zhuang Zhihua, Shen Liyuan, et al. Research status and development trend of microstructure control of advanced high strength steels[J]. Heat Treatment of Metals, 2019, 44(5): 12-17. [21] 李铭煊, 张覃轶, 蒋 巍, 等. 8Cr13马氏体不锈钢中碳化物细化工艺及其对性能的影响[J]. 金属热处理, 2024, 49(11): 215-223. Li Mingxuan, Zhang Qinyi, Jiang Wei, et al. Refining process of carbide in 8Cr13 martensitic stainless steel and its effect on properties[J]. Heat Treatment of Metals, 2024, 49(11): 215-223. [22] De A K, Murdock D C, Mataya M C, et al. Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction[J]. Scripta Materialia, 2004, 50(12): 1445-1449. [23] Zhao P, Zhang B, Cheng C, et al. The significance of ultrafine film-like retained austenite in governing very high cycle fatigue behavior in an ultrahigh-strength Mn-Si-Cr-C steel[J]. Materials Science and Engineering A, 2015, 645: 116-121. [24] Chen Y, Luo L, Zhang Y, et al. Effect of Al element on retained austenite, residual compressive stress, and contact fatigue life of carburized and quenched 20MnCr5 steel gear[J]. Materials, 2024, 17(23): 5764. [25] 郭浩冉, 高古辉, 桂晓露, 等. 显微组织对贝氏体钢筋氢脆敏感性的影响[J]. 材料导报, 2019, 33(10): 1717-1722. Guo Haoran, Gao Guhui, Gui Xiaolu, et al. Effect of microstructure on hydrogen embrittlement sensitivity of bainitic bars[J]. Materials Review, 2019, 33(10): 1717-1722. [26] 顾宝兰, 徐学东, 周 莉. 管线用钢显微组织对氢致裂纹影响的研究[J]. 理化检验(物理分册), 2006, 42(1): 8-11. Gu Baolan, Xu Xuedong, Zhou Li.The effect of microstructure on hydrogen-induced cracking in pipeline steel[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2006, 42(1): 8-11. [27] Kirchheim R. Revisiting hydrogen embrittlement models and hydrogen-induced homogeneous nucleation of dislocations[J]. Scripta Materialia, 2010, 62: 67-70. [28] Zheng C, Lv B, Chen C, et al. Hydrogen embrittlement of a manganese-aluminum high-strength bainitic steel for railway crossings[J]. ISIJ International, 2011, 51(10): 1749-1753. |