[1] Guo F J, Wang M S, Ye P H, et al. Achieving good ductility in 2.1 GPa grade maraging steel[J]. Materials Science and Engineering A, 2024, 890: 145886. [2] 李 虎, 刘 咏, 赵伟江, 等. Al合金化对无Co马氏体时效钢微观结构与力学性能的影响[J]. 中国科学: 技术科学, 2023, 53(11): 1990-2002. Li Hu, Liu Yong, Zhao Weijiang, et al. Effect of Al alloying on microstructures and mechanical properties of Co-free maraging steel[J]. Scientia Sinica (Technologica), 2023, 53(11): 1990-2002. [3] Tewari R, Mazumder S, Batra I S, et al. Precipitation in 18wt%Ni maraging steel of grade 350[J]. Acta Materialia, 2000, 48: 1187-1200. [4] Niu M C, Yin L C, Yang K, et al. Synergistic alloying effects on nanoscale precipitation and mechanical properties of ultrahigh-strength steels strengthened by Ni3Ti, Mo-enriched, and Cr-rich co-precipitates[J]. Acta Materialia, 2021, 209: 116788. [5] Zeisl S, Landefeld A, Van S N, et al. The role of alloying elements in NiAl and Ni3Ti strengthened Co-free maraging steels[J]. Materials Science and Engineering A, 2022, 861: 144313. [6] Wan J Q, Ruan H H, Ding Z Y, et al. A novel maraging stainless steel ultra-high-strengthened by multi-nanoprecipitations[J]. Scripta Materialia, 2023, 226: 115224. [7] 周 成, 叶其斌, 田 勇, 等. 超高强度结构钢的研究及发展[J]. 材料热处理学报, 2021, 42(1): 14-23. Zhou Cheng, Ye Qibin, Tian Yong, et al. Research and application progress of ultra-high strength structural steel[J]. Transactions of Materials and Heat Treatment, 2021, 42(1): 14-23. [8] Niu M C, Zhou G, Wang W, et al. Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel[J]. Acta Materialia, 2019, 179: 296-307. [9] Sun L, Simm T H,Martinc T L, et al. A novel ultra-high strength maraging steel with balanced ductility and creep resistance achieved by nanoscale β-NiAl and Laves phase precipitates[J]. Acta Materialia, 2018, 149: 285-301. [10] Shi Z Y, Zhao J, Sun L, et al. Effects of titanium and carbon on cohesion property and brittleness of grain boundary of molybdenum[J]. Solid State Communications, 2022, 356: 114963. [11] Li H, Liu Y, Liu B, et al. Synergistic enhancement of strength and ductility of cobalt-free maraging steel via nanometer-scaled microstructures[J]. Materials Science and Engineering A, 2022, 842: 143099. [12] Gao Y H, Liu S Z, Hu X B, et al. A novel low cost 2000 MPa grade ultra-high strength steel with balanced strength and toughness[J]. Materials Science and Engineering A, 2019, 759: 298-302. [13] Kumar R, Gokhale A, Varma A, et al. Role of Nb(C, N) and Cr carbides on the fracture behaviour of Super304H steel using in-situ tensile studies[J]. Materials Letters, 2023, 351: 135107. [14] 曹建春, 雍岐龙, 刘清友, 等. 含铌钼钢中微合金碳氮化物沉淀析出及其强化机制[J]. 材料热处理学报, 2006, 27(5): 51-55, 132. Cao Jianchun, Yong Qilong, Liu Qingyou, et al. Precipitation of carbonitride precipitation of microalloys in niobium-molybdenum steels and their strengthening mechanism[J]. Transactions of Materials and Heat Treatment, 2006, 27(5): 51-55, 132. [15] Lee D G, Jang K C, Kuk J M, et al. The influence of niobium and aging treatment in the 18% Ni maraging steel[J]. Journal of Materials Processing Technology, 2005, 162-163: 342-349. [16] Yoo J, Jo M C, Bian J, et al. Effects of Nb or (Nb+Mo) alloying on Charpy impact, bending, and delayed fracture properties in 1.9-GPa-grade press hardening steels[J]. Materials Characterization, 2021, 176: 111133. [17] 张正延, 孙新军, 雍岐龙, 等. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为[J]. 金属学报, 2016, 52(4): 410-418. Zhang Zhengyan, Sun Xinjun, Yong Qilong, et al. Precipitation behavior of nanometer-sized carbides in Nb-Mo microalloyed high strength steel and its strengthening mechanism[J]. Acta Metallurgica Sinica, 2016, 52(4): 410-418. [18] Zhou W H, Guo H, Xie Z J, et al. High strength low-carbon alloyed steel with good ductility by combining the retained austenite and nano-sized precipitates[J]. Materials Science and Engineering A, 2013, 587: 365-371. [19] Shi Z Y, Zhao J, Sun L, et al. Effects of titanium and carbon on cohesion property and brittleness of grain boundary of molybdenum[J]. Solid State Communications, 2022, 356: 114963. [20] Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility[J]. Nature Materials, 2013, 12(4): 344-350. [21] Miller M K, Kenik E A, Mousa M S, et al. Improvement in the ductility of molybdenum alloys due to grain boundary segregation[J]. Scripta Materialia, 2002, 46(4): 299-303. [22] Erlach S D, Leitner H, Bischof M, et al. Comparison of NiAl precipitation in a medium carbon secondary hardening steel and C-free PH13-8 maraging steel[J]. Materials Science and Engineering A, 2006, 429(1/2): 96-106. [23] 杨道宽, 仇念双, 左小伟. 铁素体耐热钢中碳化物对NiAl析出相及力学性能的影响[J]. 材料导报, 2023, 37(17): 248-255. Yang Daokuan, Qiu Nianshuang, Zuo Xiaowei. Effect of carbides on NiAl precipitates and mechanical properties in NiAl-precipitation-strengthened ferritic heat-resistant steels[J]. Materials Reports, 2023, 37(17): 248-255. [24] 赵 锴, 杨忠民, 王文涛, 等. 碳含量对Fe-15Mn-4.5Si-10Cr-5Ni-C系形状记忆合金性能的影响机制[J]. 钢铁, 2021, 56(2): 117-125. Zhao Kai, Yang Zhongmin, Wang Wentao, et al. Effect mechanism of carbon content on properties of Fe-15Mn-4.5Si-10Cr-5Ni-C-based shape memory alloy[J]. Iron and Steel, 2021, 56(2): 117-125. [25] 孙立国, 周 健, 殷军伟, 等. 碳含量对4Cr5Mo2V热作模具钢显微组织及热稳定性的影响[J]. 机械工程材料, 2020, 44(8): 38-43. Sun Liguo, Zhou Jian, Yin Junwei, et al. Effect of carbon content on microstructure and thermal stability of 4Cr5Mo2V hot work die steel[J]. Materials for Mechanical Engineering, 2020, 44(8): 38-43. [26] Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys[J]. Acta Materialia, 2003, 51(6): 1789-1799. [27] Wang Y X, Guo X F, Hu C D, et al. Industrially produced 2.4 GPa ultra-strong steel via nanoscale dual-precipitates co-configuration[J]. Materials Characterization, 2024, 208: 113646. [28] 李 烁, 闫 森, 金奎文, 等. 碳含量及热加工变形量对镍基合金GH3625组织和性能的影响[J]. 特殊钢, 2022, 43(2): 75-78. Li Shuo, Yan Sen, Jin Kuiwen, et al. Effect of carbon content and hot-working deformation on microstructure and properties of nickel base alloy GH3625[J]. Special Steel, 2022, 43(2): 75-78. [29] Sun C, Fu P X, Ma X P, et al. Effect of matrix carbon content and lath martensite microstructures on the tempered precipitates and impact toughness of a medium-carbon low-alloy steel[J]. Journal of Materials Research and Technology, 2020, 9(4): 7701-7710. [30] 吴红庆, 魏金龙, 邓志鹏, 等. 碳含量对Cr5型冷作模具钢显微组织及性能的影响[J]. 机械工程材料, 2020, 44(S2): 107-112. Wu Hongqing, Wei Jinlong, Deng Zhipeng, et al. Effect of carbon content on microstructure and properties of Cr5 type cold work die steel[J]. Materials for Mechanical Engineering, 2020, 44(S2): 107-112. [31] 张芮辉, 张 弛, 夏志新, 等. T91铁素体耐热钢析出相的优化控制[J]. 金属学报, 2013, 49(9): 1075-1080. Zhang Ruihui, Zhang Chi, Xia Zhixin, et al. Optimizing control of precipitates in T91 ferritic heat-resistant steel[J]. Acta Metallurgica Sinica, 2013, 49(9): 1075-1080. |