[1] 谢奇迈, 马庆爽, 张海莲, 等. 新型含铝奥氏体耐热钢中合金元素作用机制研究现状[J]. 中国冶金, 2022, 32(7): 1-11. Xie Qimai, Ma Qingshuang, Zhang Hailian, et al. Research status of elements alloying mechanism in alumina-forming austenitic heat-resistant steel[J]. China Metallurgy, 2022, 32(7): 1-11. [2] 邓鹏飞, 左林春, 陈星伟, 等. K438铸造高温合金表面热浸镀铝涂层的抗氧化性能[J]. 金属热处理, 2021, 46(11): 207-212. Deng Pengfei, Zuo Linchun, Chen Xingwei, et al. Oxidation resistance of hot-dip aluminized coating on cast K438 superalloy[J]. Heat Treatment of Metals, 2021, 46(11): 207-212. [3] 李 杰, 胡建文, 陆子彤. GX40CrNiSi25-12奥氏体耐热铸钢的高温氧化性能[J]. 金属热处理, 2022, 47(11): 211-215. Li Jie, Hu Jianwen, Lu Zitong. High temperature oxidation properties of GX40CrNiSi25-12 austenitic heat resistant cast steel[J]. Heat Treatment of Metals, 2022, 47(11): 211-215. [4] Behjati P, Kermanpur A, Najafizadeh A. Influence of nitrogen alloying on properties of Fe318Cr312Mn3XN austenitic stainless steels[J]. Materials Science and Engineering A, 2013, 588: 43-48. [5] Moteshakker A, Danaee I. Microstructure and corrosion resistance of dissimilar weld-joints between duplex stainless steel 2205 and austenitic stainless steel 316L[J]. Journal of Materials Science Technology, 2016, 32(3): 282-290. [6] 张 炎, 徐传成, 潘 宇. HK40耐热钢热浸镀Al工艺[J]. 特种铸造及有色合金, 2014, 34(05): 460-462. Zhang Yan, Xu Chuancheng, Pan Yu. Hot-dipped aluminizing on the HK40 heat-resistant steel[J]. Special Casting & Nonferrous Alloys, 2014, 34(5): 460-462. [7] Liu T L, Zheng K H, Lin Y F, et al. Effect of second-phase particles on the oxidation behaviour of a high-manganese austenitic heat-resistant steel[J].Corrosion Science, 2021, 182: 109284.1-109284.10. [8] 方旭东, 王 剑, 权 鑫, 等. Al添加量对Fe-22Cr-25Ni奥氏体耐热钢析出和力学性能的影响[J]. 金属热处理, 2019, 44(4): 66-71. Fang Xudong, Wang Jian, Quan Xin, et al. Effect of Al addition on precipitation and mechanical properties of Fe-22Cr-25Ni austenitic heat resistant steel[J]. Heat Treatment of Metals, 2019, 44(4): 66-71. [9] Kim J H, Wang J P, Kang C Y. Effect of aluminizing treatment on the oxidation properties of 12Cr heat resisting steel[J]. Metals & Materials International, 2011, 17(6): 931-935. [10] 杨 珍, 鲁金涛, 张 鹏, 等. Super304H钢表面铝扩散涂层的组织结构和抗蒸汽氧化性能[J]. 表面技术, 2020, 49(1): 64-71. Yang Zhen, Lu Jintao, Zhang Peng, et al. Microstructure and steam oxidation performance of the aluminium diffusion coating on Super304H steel[J]. Surface Technology, 2020, 49(1): 64-71. [11] Saunders S R J, Monteiro M, Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review[J]. Progress in Materials Science, 2008, 53(5):775-837. [12] Agüero A, Muelas R, Pastor A, et al. Long exposure steam oxidation testing and mechanical properties of slurry aluminide coatings for steam turbine components[J]. Surface and Coatings Technology, 2005, 200(5-6): 1219-1224. [13] 李凌霄, 赵艳君, 张敬瑞, 等. Super304H奥氏体不锈钢的高温抗氧化性能[J]. 金属热处理, 2023, 48(1): 80-86. Li Lingxiao, Zhao Yanjun, Zhang Jingrui, et al. High temperature oxidation resistance of Super304H austenitic stainless steel[J]. Heat Treatment of Metals, 2023, 48(1): 80-86. [14] 李德元, 唐 勇, 贾倩倩. 加热扩散对电弧喷涂Al涂层的影响[J]. 沈阳工业大学学报, 2018, 40(5): 498-504 Li Deyuan, Tang Yong, Jia Qianqian. Effect of heating diffusion on arc sprayed Al coating[J]. Journal of Shenyang University of Technology, 2018, 40(5): 498-504. [15] 郭孟鑫, 冉雪林, 张 进. GH738合金表面Al-Si渗层的制备及其抗氧化行为[J]. 金属热处理, 2023, 48(3): 188-194. Guo Mengxin, Ran Xuelin, Zhang Jin. Preparation and oxidation resistance of Al-Si coating on GH738 alloy[J]. Heat Treatment of Metals, 2023, 48(3): 188-194. [16] Senderowski C, Bojar Z. Gas detonation spray forming of Fe-Al coatings in the presence of inter layer[J]. Surface and Coatings Technology, 2007, 202(15): 3538-3548. [17] Zhou J, Yang M, Wang R, et al. Annealing behavior of aluminum coating prepared by arc spraying on P355NL1 steel[J]. Surface and Coatings Technology, 2017, 330: 53-60. [18] Springer H, Kostka A, Payton E, et al. On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys[J]. Acta Materialia, 2011, 59(4): 1586-1600. [19] Si X, Li C, Bo Y, et al. The role of Al diffusion behavior in the process of forming a super-reliable Al2O3 protective layer during reactive air aluminization[J]. Applied Surface Science,2020, 518: 146242. [20] Luo Z C, Zhang Q, Ma X, et al. Microstructure evolution process of ferro-aluminum based sandwich composite for electromagnetic shielding[J]. Micron, 2014, 64: 34-38. [21] He H, Zhang L X, Liu Z X, et al. Evolution of intermetallics between solid Fe-Cr/Fe-Ni alloys and molten aluminium[J]. International Journal of Mechanical Sciences, 2023, 257: 108549. [22] Wang H, Harrington T, Zhu C, et al. Design, fabrication and characterization of FeAl-based metallic-intermetallic laminate (MIL) composites[J]. Acta Materialia, 2019, 175: 445-456. [23] 李宁宁, 陈 旸, 陈 希, 等. 包埋渗铝法制备Fe-Al渗层及其扩散机制[J]. 材料研究学报, 2021, 35(8): 572-582. Li Ningning, Chen Yang, Chen Xi, et al. Preparation method and diffusion mechanism of Fe-Al coating on Q235 low carbon steel by pack aluminizing[J]. Chinese Journal of Materials Research, 2021, 35(8): 572-582. [24] Wang Haitao, Zhao Qi, Yu Huashun, et al. Effect of aluminium and silicon on high temperature oxidation resistance of Fe-Cr-Ni heat resistant steel[J]. Transactions of Tianjin University, 2009(6): 457-462. [25] Dybkov I V. Interaction of iron-nickel alloys with liquid aluminium. Part II Formation of intermetallics[J]. Journal of Materials Science, 2000, 35(7): 1729-1736. [26] Zhang K, Bian X, Li Y, et al. New evidence for the formation and growth mechanism of the intermetallic phase formed at the Al/Fe interface[J]. Journal of Materials Research, 2013, 28(23): 3279-3287. [27] Shahverdi H R, Ghomashchi M R, Shabestari S, et al. Microstructural analysis of interfacial reaction between molten aluminium and solid iron[J]. Journal of Materials Processing Technology, 2002, 124(3): 345-352. |