[1] Huang X, Kang N, Coddet P, et al. Analyses of the sliding wear behavior of NiTi shape memory alloys fabricated by laser powder bed fusion based on orthogonal experiments[J]. Wear, 2023, 534-535: 205130. [2] Jani J M, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities[J]. Materials & Design, 2014, 56: 1078-1113. [3] Xu B, Sun Y, Yu C, et al. Effect of Ni4Ti3 precipitates on the functional properties of NiTi shape memory alloys: A phase field study[J]. International Journal of Plasticity, 2024, 177: 103993. [4] Semin V O, Chernova A P, Erkovich A V, et al. Electrochemical properties and structure of the TiNi alloy surface layers implanted with titanium and niobium ions[J]. Inorganic Materials and Applications Research, 2024, 15: 636-648. [5] Pushin V G, Stolyarov V V, Valiev R Z, et al. Nanostructured TiNi-based shape memory alloys processed by severe plastic deformation[J]. Materials Science and Engineering A, 2005, 410/411: 386-389. [6] Karelin R, Komarov V, Khmelevskaya I, et al. Structure and properties of TiNi shape memory alloy after Low-temperature ECAP in shells[J]. Materials Science and Engineering A, 2023, 872: 144960. [7] Kumar P, Waghmare U V. First-principles phonon-based model and theory of martensitic phase transformation in NiTi shape memory alloy[J]. Materialia, 2020, 9: 100602. [8] Li B, Liu X, He T, et al. Temperature and strain-rate dependence of thesuperelastic response in EBF3-fabricated and post-heat-treated NiTi shape memory alloy[J]. Journal of Materials Research and Technology, 2024, 28: 3775-3780. [9] 石世威, 袁志山, 王永辉, 等. 热处理对镍钛合金组织和相变特性的影响[J]. 材料热处理学报, 2017, 38(2): 48-54. Shi Shiwei, Yuan Zhishan, Wang Yonghui. et al. Effect of heat treatment on microstructure and phase transformation behavior of NiTi shape memory alloys[J]. Transactions of Materials and Heat Treatment, 2017, 38(2): 48-54. [10] 王书晗, 王 健, 王晓炜. 热处理对医用NiTi合金显微组织及相变行为的影响[J]. 中国医疗器械信息, 2016, 22(23): 6-9. Wang Shuhan, Wang Jian, Wang Xiaowei. Influence of heat treatment on microstructure and phase transformation of NiTi medical used alloys[J]. China Medical Device Information, 2016, 22(23): 6-9. [11] 刘礼华, 杨建华, 赵连城. 约束加热温度对近等原子比NiTi合金相变行为的影响[J]. 金属科学与工艺, 1992, 11(2): 24-29. Liu Lihua, Yang Jianhua, Zhao Liancheng. Effect of confinement-heating temperature on the transformation behavior in a near-equiatomic NiTi alloy[J]. Materials Science and Technology, 1992, 11(2): 24-29. [12] Sinha A, Mondal B, Chattopadhyay P P. Mechanical properties of Ti-(~49at%)Ni shape memory alloy, part II: Effect of ageing treatment[J]. Materials Science and Engineering A, 2013, 561: 344-351. [13] Lin H C, Wu S K, Chou T S. Aging effect on the low temperature internal friction relaxation peak in a Ti49Ni51 alloy[J]. Journal of Alloys and Compounds, 2003, 355(1): 90-96. [14] Nakayama H, Tsuchiya K, Umemoto M. Crystal refinement and amorphisation by cold rolling in tini shape memory alloys[J]. Scripta Materialia, 2001, 44(8): 1781-1785. [15] Liang Q, Zhao S, Liang C, et al. Strain states and unique properties in cold-rolled TiNi shape memory alloys[J]. Acta Materialia, 2022, 231: 117890. [16] Wang Y, Chen J, Ding R, et al. Effect of cold rolling on microstructure and mechanical property of a novel (Fe50Mn30Co10Cr10)97C2Mo1 high entropy alloy[J]. Journal of Materials Research and Technology, 2023, 27: 6065-6075. [17] Emadinia O, Simões S, Viana F, et al. Cold rolled versus sputtered Ni/Ti multilayers for reaction-assisted diffusion bonding[J]. Welding in the World, 2016, 60(2): 337-344. [18] Ma Y, Li H, Yang L, et al. Reaction-assisted diffusion bonding of Ti6Al4V alloys with Ti/Ni nanostructured multilayers[J]. Journal of Materials Processing Technology, 2018, 262: 204-209. |