[1] 林忠钦, 于忠奇, 戴冬华, 等. 复杂高筋薄壁构件旋压-增材复合制造技术发展与展望[J]. 航空学报, 2023, 44(9): 6-29. Lin Zhongqin, Yu Zhongqi, Dai Donghua, et al. Development and prospect of metal spinning: Additive hybrid manufacturing technology for complex thin-walled component with high ribs[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 6-29. [2] Zhang Z, Hua K, Cao Y, et al. Microstructures and properties of FeCrAlMoSix high entropy alloy coatings prepared by laser cladding on a titanium alloy substrate[J]. Surface and Coatings Technology, 2024, 478: 130437. [3] 刘 冉, 罗海光, 李 颖, 等. FeCoCrNi涂层激光熔覆过程温度场与应力场模拟[J]. 金属热处理, 2025, 50(8): 254-263. Liu Ran, Luo Haiguang, Li Ying, et al. Simulation on temperature and stress field of FeCoCrNi coating during laser cladding[J]. Heat Treatment of Metals, 2025, 50(8): 254-263. [4] 乔青峰, 姚小春, 张志坚, 等. 锁紧销表面激光熔覆铁基和镍基合金的组织与性能[J]. 金属热处理, 2024, 49(6): 159-164. Qiao Qingfeng, Yao Xiaochun, Zhang Zhijian, et al. Microstructure and properties of laser cladding iron-based and nickel-based alloys on surface of locking pin[J]. Heat Treatment of Metals, 2024, 49(6): 159-164. [5] Liu Y, Ding Y, Yang L, et al. Research and progress of laser cladding on engineering alloys: A review[J]. Journal of Manufacturing Processes, 2021, 66: 341-363. [6] Zhu L, Xue P, Lan Q, et al. Recent research and development status of laser cladding: A review[J]. Optics and Laser Technology, 2021, 138: 106915. [7] 李方义, 戚小霞, 李燕乐, 等. 盾构机关键零部件再制造修复技术综述[J]. 中国机械工程, 2021, 32(7): 820-831. Li Fangyi, Qi Xiaoxia, Li Yanle, et al. Review on repair technologies for key part remanufacturing of shield machines[J]. China Mechanical Engineering, 2021, 32(7): 820-831. [8] 李方义, 李 振, 王黎明, 等. 内燃机增材再制造修复技术综述[J]. 中国机械工程, 2019, 30(9): 1119-1127, 1133. Li Fangyi, Li Zhen, Wang Liming, et al. Review on ICE remanufacture with additive repair technology[J]. China Mechanical Engineering, 2019, 30(9): 1119-1127, 1133. [9] Sommer N, Stredak F, Böhm S. High-speed laser cladding on thin-sheet-substrates—Influence of process parameters on clad geometry and dilution[J]. Coatings, 2021, 11(8): 952. [10] 肖志玲, 何超伟, 胡松浩, 等. 激光熔覆对薄壁基体的组织性能影响[J]. 应用激光, 2020, 40(6): 1011-1016. Xiao Zhiling, He Chaowei, Hu Songhao, et al. Effect of laser cladding on microstructure and properties of thin-walled matrix[J]. Applied Laser, 2020, 40(6): 1011-1016. [11] 张富祯, 孙文磊, 王恪典, 等. 面向薄壁件的激光熔覆修复工艺参数优化研究[J]. 表面技术, 2019, 48(1): 168-174. Zhang Fuzhen, Sun Wenlei, Wang Kedian, et al. Optimization of laser cladding repair process parameters for thin-wall parts[J]. Surface Technology, 2019, 48(1): 168-174. [12] 李宝灵, 刘旭红, 温宗胤, 等. 灰铸铁激光熔覆铁基和镍基粉末的比较[J]. 中国表面工程, 2012, 25(4): 89-93. Li Baoling, Liu Xuhong, Wen Zongyin, et al. Comparisons between Ni-based and Fe-based alloy powder on gray cast iron by laser cladding[J]. China Surface Engineering, 2012, 25(4): 89-93. [13] 王嘉圣, 李云峰, 石 岩, 等. 载气流量及搭接率对激光熔覆涂层形貌和应力场的影响[J]. 金属热处理, 2024, 49(6): 77-84. Wang Jiasheng, Li Yunfeng, Shi Yan, et al. Effects of carrier gas flow and overlap rate on morphology and stress field of laser clad coatings[J]. Heat Treatment of Metals, 2024, 49(6): 77-84. [14] Qin R, Zhang X, Guo S, et al. Laser cladding of high Co-Ni secondary hardening steel on 18Cr2Ni4WA steel[J]. Surface and Coatings Technology, 2016, 285: 242-248. [15] Liu J, Li J, Cheng X, et al. Microstructures and tensile properties of laser cladded AerMet100 steel coating on 300M steel[J]. Journal of Materials Science and Technology, 2018, 34(4): 643-652. [16] 卢庆亮, 王 静, 戚小霞, 等. 面向盾构机密封跑道修复的激光熔覆Fe基涂层制备工艺[J]. 金属热处理, 2022, 47(1): 202-211. Lu Qingliang, Wang Jing, Qi Xiaoxia, et al. Preparation technology of laser clad Fe-based coating for shield sealing runway repair[J]. Heat Treatment of Metals, 2022, 47(1): 202-211. [17] 董 会, 甘少明, 杜永祺, 等. 激光扫描速率对NiCr/Cr3C2涂层微结构与耐磨性的影响[J]. 金属热处理, 2023, 48(11): 282-287. Dong Hui, Gan Shaoming, Du Yongqi, et al. Effect of laser scanning rate on microstructure and wear resistance of NiCr/Cr3C2 coating[J]. Heat Treatment of Metals, 2023, 48(11): 282-287. [18] Pang X, Yao C, Xiong Z, et al. Comparative study of coatings with different molybdenum equivalent on titanium alloy forged plate for laser cladding: Microstructure and mechanical properties[J]. Surface and Coatings Technology, 2022, 446: 128760. [19] An D, Zhang T, Wang T, et al. Interfacial microstructure evolution and mechanical properties of TIG welding joints of AISI 304/Q235B rolled composite plates[J]. Journal of Adhesion Science and Technology, 2024, 38(12): 2191-2208. [20] Mohammadi A, Vanhove H, VanBael A, et al. Effect of laser transformation hardening on the accuracy of SPIF formed parts[J]. Journal of Manufacturing Science and Engineering, 2017, 139: 011007. |