金属热处理 ›› 2025, Vol. 50 ›› Issue (11): 110-117.DOI: 10.13251/j.issn.0254-6051.2025.11.016

• 组织与性能 • 上一篇    下一篇

塑性变形对Al-Fe合金线材组织与性能的影响

李程辉1, 李荣华1, 侯嘉鹏2, 顾建3, 李冬青3, 范雪圆2, 王硕2, 张哲峰2   

  1. 1.辽宁石油化工大学 机械工程学院, 辽宁 抚顺 113001;
    2.中国科学院金属研究所 沈阳材料科学国家研究中心, 辽宁 沈阳 110016;
    3.国网电力工程研究院有限公司, 北京 102401
  • 收稿日期:2025-06-14 修回日期:2025-09-28 发布日期:2025-12-16
  • 通讯作者: 李荣华,副教授,博士,E-mail:rhli11b@alum.imr.ac.cn
  • 作者简介:李程辉(1997—),男,硕士研究生,主要研究方向为高强度高导电铝铁合金线,E-mail:846680892 @qq.com。
  • 基金资助:
    国家自然科学基金面上项目(52273322,52571160);辽宁省教育厅基本科研项目(LJ212510148029)

Effect of plastic deformation on microstructure and properties of Al-Fe alloy wire

Li Chenghui1, Li Ronghua1, Hou Jiapeng2, Gu Jian3, Li Dongqing3, Fan Xueyuan2, Wang Shuo2, Zhang Zhefeng2   

  1. 1. School of Mechanical Engineering, Liaoning Petrochemical University, Fushun Liaoning 113001, China;
    2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang Liaoning 110016, China;
    3. State Grid Electric Power Engineering Research Institute Company Limited, Beijing 102401, China
  • Received:2025-06-14 Revised:2025-09-28 Published:2025-12-16

摘要: 通过铸造、锻造、热挤压和冷拉拔的工艺制备了直径ϕ5 mm的Al-Fe合金线,考察了各塑性变形工艺对Al-Fe合金线微观组织和性能的影响规律。结果表明,随着塑性变形量的不断增加,Al-Fe合金线径向晶粒尺寸从铸态的粗晶逐步细化至拉拔态的超细晶,并且形成了较强的<111>丝织构和较弱的<001>织构,另外,在Al-Fe合金线内可观察到纳米尺度的析出相。性能测试表明Al-Fe合金线抗拉强度为175.4 MPa,断裂总延伸率为9.4%,导电率达到58.89%IACS。理论分析表明Al-Fe合金线的强化机制为析出强化、细晶强化和织构强化,而Al-Fe合金线电阻率的影响因素则主要来自于析出相、晶界和固溶原子。进一步定量分析表明,析出相和晶界对强度的贡献相近,但析出相所引起的电阻率增量约为晶界的10倍,说明在强化材料的同时,晶界对导电性能的损害较小,因此晶界作为强化组织相较于析出相,能更高效地平衡强度和导电性。

关键词: 塑性加工, Al-Fe合金, 微观组织, 强度, 导电率

Abstract: A ϕ5 mm Al-Fe alloy wire was prepared by casting, forging, hot extrusion, and cold drawing processes, and the influence of various plastic deformation processes on the microstructure and properties of the Al-Fe alloy wire was investigated. The results show that with the increase of plastic deformation, the radial grain size of the Al-Fe alloy wire gradually refines from coarse grains in the as-cast state to ultra-fine grains in the drawn state. Additionally, a strong <111> wire texture and a weak <001> texture are formed. Furthermore, nanoscale precipitates are observed within the Al-Fe alloy wire. Performance tests reveal that the ultimate tensile strength of the Al-Fe alloy wire is 175.4 MPa, total elongation at fracture is 9.4%, and electrical conductivity reaches 58.89%IACS. Theoretical analysis indicates that the strengthening mechanisms of the Al-Fe alloy wire include precipitation strengthening, grain boundary strengthening, and texture strengthening. The electrical resistivity of the Al-Fe alloy wire is primarily influenced by the precipitates, grain boundaries, and solid solution atoms. Further quantitative analysis shows that the contributions of precipitates and grain boundaries to strength are similar, but the resistivity increase caused by precipitates is approximately 10 times that caused by grain boundaries. This indicates that, while both mechanisms strengthen the material, grain boundaries have a smaller detrimental effect on electrical conductivity. Therefore, as a strengthening structure, grain boundaries are more efficient than precipitates in balancing both strength and electrical conductivity.

Key words: deformation process, Al-Fe alloy, microstructure, strength, electrical conductivity

中图分类号: