[1] 刘 冠, 许莉莉, 朱红标. 高导电率铝合金导线及其制备研究[J]. 化学工程与装备, 2024, 53(11): 8-10. [2] 赖建川. 节能导线在高压输电线路设计中的应用研究[J]. 中国高新科技, 2024(16): 99-101. Lai Jianchuan. Research on the application of energy-saving conductors in the design of high-voltage transmission lines[J]. China High and New Technology, 2024(16): 99-101. [3] 黎汉林. JLHA55.25高强度高导电率铝合金导线研制及应用[J]. 光纤与电缆及其应用技术, 2023(3): 17-20. Li Hanlin. Development and application of JLHA55.25 high strength and high conductivity aluminum alloy conductor[J]. Optical Fiber & Electric Cable and Their Applications, 2023(3): 17-20. [4] Levin A A, Narykova M V, Lihachev A I, et al. Comparison of structural, microstructural, elastic, and microplastic properties of the AAAC(A50) and ACSR(AC50/8) cables after various operation periods in power transmission lines[J]. Crystals, 2022, 12(9): 1-3. [5] Karabay S. Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment for all-aluminium alloy conductors[J]. Materials & Design, 2006, 27(10): 821-832. [6] Karabay S. Influence of AlB2 compound on elimination of incoherent precipitation in artificial aging of wires drawn from redraw rod extruded from billets cast of alloy AA-6101 by vertical direct chill casting[J]. Materials & Design, 2008, 29(7): 1364-1375. [7] Khangholi S N, Javidani M, Maltais A, et al. Novel approach to high-strength, highly conductive Al-Mg-Si conductor alloys with Ag/Cu additions[J]. Materials Today Communications, 2024, 39: 1-10. [8] Khangholi S N, Javidani M, Maltais A, et al. Effects of natural aging and pre-aging on the strength and electrical conductivity in Al-Mg-Si AA6201 conductor alloys[J]. Materials Science and Engineering A, 2021, 820: 3-7. [9] Sauvage X, Bobruk E V, Murashkin M Y, et al. Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al-Mg-Si alloys[J]. Acta Materialia, 2015, 98: 355-366. [10] Cubero-Sesin J M, Watanabe M, Horita Z. High-resolution electron microscopy study of particle dispersion and precipitation in a nanostructured Al-2%Fe alloy[J]. Journal of Materials Science, 2024, 59(14): 5787-5804. [11] Arbeiter J, Vončina M, Šetina Batič B, et al. Transformation of the metastable Al6Fe intermetallic phase during homogenization of a binary Al-Fe alloy[J]. Materials, 2021, 14(23): 2-8. [12] Kobayashi R, Funazuka T, Maeda T, et al. Effects of material structure on stress relaxation characteristics of rapidly solidified Al-Fe alloy[J]. Materials, 2023, 16(17): 2-8. [13] Cubero-Sesin J M, In H, Arita M, et al. High-pressure torsion for fabrication of high-strength and high-electrical conductivity Al micro-wires[J]. Journal of Materials Science, 2014, 49(19): 6550-6557. [14] Cubero-Sesin J M, Horita Z. Mechanical properties and microstructures of Al-Fe alloys processed by high-pressure torsion[J]. Metallurgical & Materials Transactions, 2012, 43: 5182-5192. [15] Cubero-Sesin J M, Horita Z. Strengthening via microstructure refinement in bulk Al-4mass%Fe alloy using high-pressure torsion[J]. Materials Transactions, 2012, 53(1): 46-55. [16] 雷文魁, 王 振, 李焕婷, 等. 连铸连轧高强高导铝合金圆杆质量控制措施研究[J]. 铝加工, 2024, 49(4): 44-45. Lei Wenkui, Wang Zhen, Li Huanting, et al. Research of quality control measures of high strength and high conductivity aluminium alloy round rod produced by continuous casting and rolling process[J]. Aluminium Fabrication, 2024, 49(4): 44-45. [17] Wang W, Pan Q, Lin G, et al. Microstructure and properties of novel Al-Ce-Sc, Al-Ce-Y, Al-Ce-Zr and Al-Ce-Sc-Y alloy conductors processed by die casting, hot extrusion and cold drawing[J]. Journal of Materials Science & Technology, 2020, 58: 155-170. [18] Asgharzadeh H, Simchi A, Kim H S. Microstructure and mechanical properties of oxide-dispersion strengthened Al6063 alloy with ultra-fine grain structure[J]. Metallurgical and Materials Transactions A, 2011, 42(3): 816-824. [19] Asgharzadeh H, Simchi A, Kim H S. Microstructural features, texture and strengthening mechanisms of nanostructured AA6063 alloy processed by powder metallurgy[J]. Materials Science and Engineering A, 2011, 528(12): 3981-3989. [20] Seidman D N, Marquis E A, Dunand D C. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys[J]. Acta Materialia, 2002, 50(16): 4021-4035. [21] Dixit M, Mishra R S, Sankaran K K. Structure-property correlations in Al7050 and Al7055 high-strength aluminum alloys[J]. Materials Science and Engineering A, 2008, 478(1): 163-172. [22] Zhang Z, Chen D L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength[J]. Scripta Materialia, 2006, 54(7): 1321-1326. [23] Zheng Z, Zhong S, Zhang X, et al. Graphene nano-platelets reinforced aluminum composites with anisotropic compressive properties[J]. Materials Science and Engineering A, 2020, 798: 1-7. [24] Hou J P, Li R, Wu X M, et al. Microstructure evolution and strength degradation mechanisms of high-strength Al-Fe wire[J]. Journal of Materials Science, 2019, 54(6): 5032-5043. [25] Botcharova E, Freudenberger J, Schultz L. Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu-Nb alloys[J]. Acta Materialia, 2006, 54(12): 3333-3341. [26] Miyajima Y, Komatsu S Y, Mitsuhara M, et al. Change in electrical resistivity of commercial purity aluminium severely plastic deformed[J]. Philosophical Magazine, 2010, 90(34): 4475-4488. |