[1]刘丽兰, 李思聪, 豆卫涛, 等. 316L不锈钢表面激光熔覆Ni60合金涂层的工艺优化与性能研究[J]. 中国激光, 2024, 51(16): 118-131. Liu Lilan, Li Sicong, Dou Weitao, et al. Process optimization and performance analysis for laser-cladding Ni60 alloy coating on surface of 316L stainless steel[J]. Chinese Journal of Lasers, 2024, 51(16): 118-131. [2]蒋华臻, 彭 爽, 胡琦芸, 等. 激光熔化沉积制备316L不锈钢的电化学腐蚀及空化腐蚀性能[J]. 金属学报, 2024, 60(11): 1512-1530. Jiang Huazhen, Peng Shuang, Hu Qiyun, et al. Corrosion and cavitation erosion resistance of 316L stainless steels produced by laser metal deposition[J]. Acta Metallurgica Sinica, 2024, 60(11): 1512-1530. [3]Ding H, Yang T, Wang W, et al. Optimization and wear behaviors of 316L stainless steel laser cladding on rail material[J]. Wear, 2023, 523: 204830. [4]Duan X, Gao S, Dong Q, et al. Reinforcement mechanism and wear resistance of Al2O3/Fe-Cr-Mo steel composite coating produced by laser cladding[J]. Surface and Coatings Technology, 2016, 291: 230-238. [5]Lian G, Gao W, Chen C, et al. Review on hard particle reinforced laser cladding high-entropy alloy coatings[J]. Journal of Materials Research and Technology, 2024, 33: 1366-1405. [6]Duan X X, Gao S Y, Gu Y F, et al. Study on reinforcement mechanism and frictional wear properties of 316L-SiC mixed layer deposited by laser cladding[J]. Chinese Journal of Lasers, 2016, 43(1): 0103004. [7]蒋廷普, 孙荣禄, 牛 伟, 等. SiC添加量对CoCrFeNi高熵合金涂层组织与性能的影响[J]. 金属热处理, 2024, 49(6): 198-205. Jiang Tingpu, Sun Ronglu, Niu Wei, et al. Effects of SiC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coating[J]. Heat Treatment of Metals, 2024, 49(6): 198-205. [8]张宏亮, 王明欣, 张京兵, 等. TiC含量对AlCoCrFeNi高熵合金熔覆层组织与耐磨性的影响[J]. 金属热处理, 2024, 49(9): 275-279. Zhang Hongliang, Wang Mingxin, Zhang Jingbing, et al. Effect of TiC content on microstructure and wear resistance of AlCoCrFeNi high-entropy alloy clad layer[J]. Heat Treatment of Metals, 2024, 49(9): 275-279. [9]Xu P, Lin C, Zhou C, et al. Wear and corrosion resistance of laser cladding AISI 304 stainless steel/Al2O3 composite coatings[J]. Surface and Coatings Technology, 2014, 238: 9-14. [10]Wei X, Dai F, Ban A, et al. Effect of Ni-coated-Al2O3 addition on slurry erosion behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding[J]. Journal of Thermal Spray Technology, 2023, 32(7): 2123-2132. [11]Qin L, Ren P, Yi Y, et al. Effect of temperature on the oxidation behavior of Al2O3 reinforced CoCrAlYTa coating by laser-induction hybrid cladding[J]. Surface and Coatings Technology, 2023, 473: 130038. [12]Luo X, Yao Z, Zhang P, et al. Al2O3 nanoparticles reinforced Fe-Al laser cladding coatings with enhanced mechanical properties[J]. Journal of Alloys and Compounds, 2018, 755: 41-54. [13]Song B, Dong S, Liao H, et al. Microstructure and wear resistance of FeAl/Al2O3 intermetallic composite[J]. Surface and Coatings Technology, 2015, 268: 24-29. [14]Liao H, Zhu H, Xue G, et al. Alumina loss mechanism of Al2O3-AlSi10Mg composites during selective laser melting[J]. Journal of Alloys and Compounds, 2019, 785: 286-295. [15]Hazra M, Mondal A, K, Kumar S, et al. Laser surface cladding of MRI 153M magnesium alloy with (Al+Al2O3)[J]. Surface and Coatings Technology, 2009, 203(16): 2292-2299. [16]Ruiz-Luna H, Márquez-Martínez P, García-Moreno Á I, et al. Laser metal deposition of mechanical milled IN718/Al2O3 nanocomposite[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(3/4): 1189-1197. [17]Di Schino A, Mecozzi M G, Barteri M, et al. Solidification mode and residual ferrite in low-Ni austenitic stainless steels[J]. Journal of Materials Science, 2000, 35, 375-380. [18]白 梅. Q235钢表面激光熔覆316L涂层及316L/Al2O3复合涂层研究[D]. 太原: 中北大学, 2015. Bai Mei. Research on laser cladding 316L coating and 316L/Al2O3 composite coatings on the surface of Q235 steel[D]. Taiyuan: North University of China, 2015. [19]Zhou L. Research status and prospect of extreme high-speed laser cladding technology[J]. Optics and Laser Technology, 2024, 168: 109800. [20]王 星, 席文君, 崔 跃, 等. 铝热合成NiAl共格强化的FeNiCrAl合金的组织演化机理和力学性能[J]. 金属学报, 2015, 51(4): 483-491. Wang Xing, Xi Wenjun, Cui Yue, et al. Microstructure evolution mechanism and mechanical properties of FeNiCrAl alloy reinforced by coherent NiAl synthe-sized by thermite process[J]. Acta Metallurgica Sinica, 2015, 51(4): 483-491. [21]李雨浓, 邹德宁, 陈浩东, 等. 冷却速率对317L奥氏体不锈钢凝固组织演变的影响[J]. 钢铁, 2024, 59(3): 147-154, 174. Li Yunong, Zou Dening, Chen Haodong, et al. Effects of cooling rates on solidification microstructure evolution of 317L austenitic stainless steel[J]. Iron and Steel, 2024, 59(3): 147-154, 174. [22]付洪宇. 同轴送粉激光增材制造不锈钢工艺与性能研究[D]. 沈阳: 沈阳理工大学, 2022. Fu Hongyu. Study on the process and performance of coaxial powder feeding laser additive manufacturing of stainless steel[D]. Shenyang: Shenyang University of Technology, 2023. [23]王志文, 刘秀波, 杨超敏, 等. 激光熔覆FeCoCrNiMnx高熵合金涂层摩擦学性能的试验研究和分子动力学模拟[J]. 摩擦学学报(中英文), 2024, 44(7): 960-972. Wang Zhiwen, Liu Xiubo, Yang Chaomin, et al. Experimental study and molecular dynamics simulation of laser coated FeCoCrNiMnx high entropy alloy coating[J]. Tribology, 2024, 44(7): 960-972. [24]李 科, 林义民, 王 飞, 等. 固溶处理对电弧增材制造超级双相不锈钢微观组织及摩擦磨损性能的影响[J]. 摩擦学学报(中英文), 2024, 44(7): 893-902. Li Ke, Lin Yimin, Wang Fei, et al. Effect of solution treatment on microstructure and wear resistance of directed energy deposited super duplex stainless steel[J]. Tribology, 2024, 44(7): 893-902. |