[1]郭帅涵, 李振兴, 岑一鸣, 等. 65Mn钢激光表面处理过程的组织分布及峰值温度模型[J]. 金属热处理, 2024, 49(1): 249-256. Guo Shuaihan, Li Zhenxing, Cen Yiming, et al. Microstructure distribution and peak temperature model of 65Mn steel during laser surface treatment[J]. Heat Treatment of Metals, 2024, 49(1): 249-256. [2]林春旭. 横拉机H13钢耐磨导轨激光表面淬火+渗氮复合处理[J]. 金属热处理, 2024, 49(4): 274-278. Lin Chunxu. Laser surface quenching and nitriding composite treatment of H13 steel wear-resistant guide rail for TDO[J]. Heat Treatment of Metals, 2024, 49(4): 274-278. [3]韦 辽, 杨 屹. 电场处理对YG8硬质合金及其刀具性能的影响[J]. 稀有金属与硬质合金, 2024, 52(1): 75-80. Wei Liao, Yang Yi. Effect of electric field treatment on the performance of YG8 cemented carbide and its cutting tool[J]. Rare Metals and Cemented Carbides, 2024, 52(1): 75-80. [4]Telasang G, Dutta M J, Padmanabham G, et al. Structure-property correlation in laser surface treated AISI H13 tool steel for improved mechanical properties[J]. Materials Science and Engineering A, 2014, 599: 255-67. [5]Wang K, Wei A, Shi Z, et al. The preparation and performance of grain size gradient TWIP steel fabricated by laser heat treatment[J]. Materials Science and Engineering A, 2019, 743: 294-300. [6]Li Z X, Wang X N, Chen J, et al. Influence of laser surface treatment on the microstructure distribution, bearing capacity and impact property of 1.0C-1.5Cr steel[J]. Materials Today Communications, 2023, 35: 106216. [7]Li Z X, Tong B Q, Zhang Q L, et al. Influence of initial microstructure on the microstructure evolution and mechanical properties of 1.0C-1.5Cr steel in the laser surface quenching[J]. Materials Science and Engineering A, 2020, 788: 139490. [8]Radkiewicz P, Kᆝzia J, Dziedzic R, et al. Local laser hardening of heat treated medium manganese steel initially processed by laser powder bed fusion (LPBF)[J]. Journal of Materials Processing Technology, 2022, 302: 117471. [9]Li Z X, Chen J S, Wang X N, et al. Microstructure distribution and bending fracture mechanism of 65Mn steel in the laser surface treatment[J]. Materials Science and Engineering A, 2022, 850: 143568. [10]Luo G, Li Y, Cheng S, et al. Achieving the hardness-ductility balance of laser quenching process via thermal cycling[J]. Materials Chemistry and Physics, 2024, 322: 129516. [11]Li Z X, Wang X N, Shen X J, et al. Achieving balance between surface strengthening and ductility in the laser surface treatment of high-carbon steel via heterostructure[J]. Materials Science and Engineering A, 2025, 924: 147777. [12]何长峰. 基于ANSYS Workbench的农用浅耕旋耕刀有限元分析[J]. 建模与仿真, 2024, 13(2): 1414-1423. He Changfeng. Finite element analysis of shallow rotary tillage knives in agriculture based on ANSYS workbench[J]. Modeling and Simulation, 2024, 13(2): 1414-1423. [13]李玖详, 刘仁鑫. 旋耕刀研究现状与展望[J]. 现代农业科技, 2015(6): 182-183. Li Jiuxiang, Liu Renxin. Research present status and prospect of rotary blade[J]. Modern Agricultural Science and Technology, 2015(6): 182-183. [14]Saxena A K, Kumar A, Herbig M, et al. Micro fracture investigations of white etching layers[J]. Materials and Design, 2019, 180: 107892. [15]Freisinger M, Zauner L, Hahn R, et al. In-situ micro-cantilever bending studies of a white etching layer thermally induced on rail wheels[J]. Materials Science and Engineering A, 2023, 869: 144805. [16]Hu J, Li X, Zhang Z, et al. Overcoming the strength-ductility trade-off in metastable dual-phase heterogeneous structures using variable temperature rolling and annealing[J]. Materials Research Letters, 2023, 11(8): 648-654. [17]Huang C X, Wang Y F, Ma X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate[J]. Materials Today, 2018, 21(7): 713-719. |