[1]Sage A M. Effect of vanadium, nitrogen, and aluminium on the mechanical properties of reinforcing bar steels[J]. Metals Technology, 1976, 3(1): 65-70. [2]Nikolaou J, Papadimitriou G D. Microstructures and mechanical properties after heating of reinforcing 500 MPa class weldable steels produced by various processes (Tempcore, microalloyed with vanadium and work-hardened)[J]. Construction and Building Materials, 2004, 18(4): 243-254. [3]曹建春, 叶亚平, 阴树标, 等. 铌微合金化抗震钢筋形变奥氏体连续冷却转变[J]. 钢铁, 2019, 54(12): 81-88. Cao Jianchun, Ye Yaping, Yin Shubiao, et al. Deformed austenite continuous cooling transformation in Nb microalloyed anti-seismic rebar[J]. Iron and Steel, 2019, 54(12): 81-88. [4]Shima J H, Hwangb B, Lee M G, et al. "Invited Paper" Computer-aided alloy designs of grade 600 MPa reinforced steel bars for seismic safety based on thermodynamic and kinetic calculations: Overview[J]. Calphad, 2018, 62(12): 67-74. [5]Liu S P, Yang C F, Zhang Y Q. Effect of adding nitrogen on microstructure and property of vanadium microalloyed reinforcing bar steel[J]. Journal of Iron and Steel Research(International), 2003, 10(2): 45-50. [6]Dai Z, Yang J, Zhang Q, et al. Effect of Nb content on the abnormal grain growth in 20MnCr5 hot-rolled bar[J]. Steel Research International, 2024, 96(6): 2400487. [7]Zhu Z, Yu H, Wang K, et al. Quantitative analysis of precipitation and strengthening mechanisms of V and V-Ti hot-rolled microalloyed steels[J]. Journal of Materials Science, 2022, 57(7): 4806-4819. [8]Wang C F, Wang Q L. Research, development and production of V-N microalloyed high strength rebars for building in China[J]. Journal of Iron and Steel Research (International), 2008, 15(2): 81-86. [9]Ghosh S, Mula S. Materials characterization fracture toughness characteristics of ultrafine grained Nb-Ti stabilized microalloyed and interstitial free steels processed by advanced multiphase control rolling[J]. Materials Characterization, 2020, 159: 110003. [10]Panfilova L M, Smirnov L A, Mitchell P S. The unique features of reinforcing steel microalloyed with nitrogen and vanadium[J]. Materials Science Forum, 2005, 500-501: 511-518. [11]吴 静, 田 俊, 王德永, 等. 镁处理对含Ti螺纹钢中夹杂物的影响[J]. 炼钢, 2022, 38(4): 78-83. Wu Jing, Tian Jun, Wang Deyong, et al. Effect of magnesium treatment on inclusion of reinforced bar containing Ti[J]. Steelmaking, 2022, 38(4): 78-83. [12]杨晓伟, 周 云, 陈焕德, 等. 钛微合金化HRB400E钢筋组织性能及强化机理[J]. 中国冶金, 2020, 30(1): 68-72. Yang Xiaowei, Zhou Yun, Chen Huande, et al. Microstructure and strengthening mechanisms of Ti microalloyed HRB400E rebar[J]. China Metallurgy, 2020, 30(1): 68-72. [13]李维娟, 康小兵. 微合金钢中微合金碳化物的溶解与时效析出[C]//2005中国钢铁年会论文集. 2005: 800-802. [14]陈 石, 汪家晗, 张云祥, 等. HRB400E钢等温热处理过程中的奥氏体晶粒长大和钒析出物的影响[J]. 金属热处理, 2024, 49(8): 15-21. Chen Shi, Wang Jiahan, Zhang Yunxiang, et al. Austenite grain growth of HRB400E steel during isothermal treatment and effect of vanadium precipitates[J]. Heat Treatment of Metals, 2024, 49(8): 15-21. [15]姚 娜, 兴 超. Nb-Ti-V-Mo微合金钢中复合碳化物的析出动力学[J]. 钢铁钒钛, 2022, 43(4): 142-149. Yao Na, Xing Chao. Precipitation kinetics of composite carbides of Nb-Ti-V-Mo microalloyed steel[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 142-149. [16]方 芳, 雍岐龙, 杨才福, 等. V(C, N)在V-N微合金钢铁素体中的析出动力学[J]. 金属学报, 2009, 45(5): 625-629. Fang Fang, Yong Qilong, Yang Caifu, et al. Precipitating kinetics of V(C, N) in ferrite of V-N microalloying steel[J]. Acta Metallurgica Sinica, 2009, 45(5): 625-629. [17]杨才福. 钒微合金化钢的技术进展与应用[J]. 钢铁研究学报, 2020, 32(12): 1029-1043. Yang Caifu. Recent development and applications of vanadium microalloying technology[J]. Journal of Iron and Steel Research, 2020, 32(12): 1029-1043. [18]Yang C F, Su H, Chai F, et al. Recent development and applications of V microalloying technology in China[J]. Journal of Iron and Steel Research (International), 2011, 18(S1): 836-842. |