[1]Kwon J Y, Jung S, Lee B, et al. Grain boundary engineering approach to improve hydrogen embrittlement resistance in FeMnC TWIP steel[J]. International Journal of Hydrogen Energy, 2018, 43(21): 10129-10140. [2]艾根根, 姜凤阳, 思 芳, 等. 退火工艺对高锰TWIP钢组织及耐蚀性能的影响[J]. 金属热处理, 2024, 49(7): 313-321. Ai Gengen, Jiang Fengyang, Si Fang, et al. Effect of annealing process on microstructure and corrosion resistance of high-Mn TWIP steel[J]. Heat Treatment of Metals, 2024, 49(7): 313-321. [3]申文竹, 李春福, 宋开红, 等. 孪生诱发塑性钢的研究现状及展望[J]. 金属热处理, 2012, 37(4): 6-10. Shen Wenzhu, Li Chunfu, Song Kaihong, et al. Research status and prospection of twinning induced plasticity steels[J]. Heat Treatment of Metals, 2012, 37(4): 6-10. [4]李硕妍, 李晓峰, 张玉鹏, 等. Al含量和显微组织对高强钢氢脆敏感性的影响[J]. 金属热处理, 2025, 50(7): 96-102. Li Shuoyan, Li Xiaofeng, Zhang Yupeng, et al. Effect of Al content and microstructure on hydrogen embrittlement susceptibility of high-strength steel[J]. Heat Treatment of Metals, 2025, 50(7): 96-102. [5]朱 颖, 刘国龙, 闫佳鹤, 等. 高强中锰钢氢脆现象的研究进展[J]. 金属热处理, 2025, 50(7): 141-150. Zhu Ying, Liu Guolong, Yan Jiahe, et al. Research progress on hydrogen embrittlement of high strength medium manganese steels[J]. Heat Treatment of Metals, 2025, 50(7): 141-150. [6]Zan N, Ding H, Guo X, et al. Effects of grain size on hydrogen embrittlement in a Fe-22Mn-0.6C TWIP steel[J]. International Journal of Hydrogen Energy, 2015, 40(33): 10687-10696. [7]Claeys L, Depover T, Verbeken K. On the role of the stacking fault energy in the beneficial effect of aluminium on the hydrogen embrittlement sensitivity of twinning-induced plasticity (TWIP) steel[J]. Materials Science and Engineering A, 2022, 855: 873-887. [8]Koyama M, Akiyama E, Tsuzaki K. Hydrogen embrittlement in Al-added twinning-induced plasticity steels evaluated by tensile tests during hydrogen charging[J]. Iron and Steel Institute of Japan International, 2012, 52(12): 2283-2287. [9]Park I, Lee S, Jeon H, et al. The advantage of grain refinement in the hydrogen embrittlement of Fe-18Mn-0.6C twinning-induced plasticity steel[J]. Corrosion Science, 2015, 93: 63-69. [10]Wang X, Sun X, Song C, et al. Enhancement of yield strength by chromium/nitrogen alloying in high-manganese cryogenic steel[J]. Materials Science and Engineering A, 2017, 698: 110-116. [11]Tsuchiyama T, Takaki S, Ito H, et al. Fabrication of ultrahigh nitrogen austenitic steels by nitrogen gas absorption into solid solution[J]. Metallurgical and Materials Transactions A, 2003, 34: 2591-2599. [12]Gao M, Cheng Z, Dong L, et al. Effect of V-Ti multi-microalloying on enhancing hydrogen embrittlement resistance in hot-stamping steel[J]. Journal of Materials Research and Technology, 2024, 33: 6990-7003. [13]Chen C, Zhang F, Wang F, et al. Effect of N+Cr alloying on the microstructures and tensile properties of Hadfield steel[J]. Materials Science and Engineering A, 2017, 679: 95-103. [14]Byrnes M L G, Grujicic M, Owen W S, et al. Nitrogen strengthening of a stable austenitic stainless steel[J]. Acta Metallurgica, 1987, 35: 1853-1862. [15]Liu S, Huang J L, Ge Y L, et al. Simultaneously enhancing the strength and ductility of Fe-Mn-C twinning-induced plasticity steel via Cr/N alloying[J]. Journal of Materials Research and Technology, 2024, 32: 3310-3317. [16]Koyama M, Akiyama E, Tsuzaki K. Effects of static and dynamic strain aging on hydrogen embrittlement in TWIP steels containing Al[J]. Iron and Steel Institute of Japan International, 2013, 53(7): 1268-1274. [17]Bai Y, Momotani Y, Chen M, et al. Effect of grain refinement on hydrogen embrittlement behaviors of high-Mn TWIP steel[J]. Materials Science and Engineering A, 2016, 651: 935-944. [18]Nagumo M. Fundamentals of Hydrogen Embrittlement [M]. Singapore: Springer, 2016. [19]Choo W, Lee J. Thermal analysis of trapped hydrogen in pure iron[J]. Metallurgical and Materials Transactions A, 1982, 13(1): 135-140. [20]Jisung Y, Chul M J, Cheol M J, et al. Effects of solid solution and grain-boundary segregation of Mo on hydrogen embrittlement in 32MnB5 hotstamping steels[J]. Acta Materialia, 2021, 207: 661-674. [21]Zhao H, Wang P, Li J, et al. Effect of vanadium content on hydrogen embrittlement of 1400 MPa grade high strength bolt steels[J]. International Journal of Hydrogen Energy, 2021, 46(70): 34983-34997. [22]陈 翠, 李维娟, 张大征, 等. 不同充氢条件下AH36钢的氢脱附及氢脆敏感性[J]. 金属热处理, 2025, 50(7): 151-158. Chen Cui, Li Weijuan, Zhang Dazheng, et al. Hydrogen desorption and hydrogen embrittlement susceptibility ofAH36 steel under different hydrogen charging conditions[J]. Heat Treatment of Metals, 2025, 50(7): 151-158. [23]Michler T, Naumann J. Hydrogen embrittlement of Cr-Mn-N austenitic stainless steels [J]. International Journal of Hydrogen Energy, 2010, 35(3): 1485-1492. [24]Koyama M, Akiyama E, Sawaguchi T, et al. Hydrogen-induced cracking at grain and twin boundaries in an Fe-Mn-C austenitic steel [J]. Scripta Materialia, 2012, 66(7): 459-462. [25]Koyama M, Akiyama E, Sawaguchi T, et al. Hydrogen-assisted quasi-cleavage fracture in a single crystalline type 316 austenitic stainless steel [J]. Corrosion Science, 2013, 75: 345-353. [26]Koyama M, Akiyama E, Tsuzaki K, et al. Hydrogen-assisted fail-ure in a twinning-induced plasticity steel studied under in situ hy-drogen charging by electron channeling contrast imaging [J]. Acta Materialia, 2013, 61(12): 4607-4618. |