[1] 杨守杰, 戴圣龙. 航空铝合金的发展回顾与展望[J]. 材料导报, 2005, 19(2): 76-80. Yang Shoujie, Dai Shenglong. A glimpse at the development and application of aluminum alloys in aviation industry[J]. Materials Review, 2005, 19(2): 76-80. [2] Hirsch J. Recent development in aluminium for automotive applications[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 1995-2002. [3] Zhang W, Xu J. Advanced lightweight materials for automobiles: A review[J]. Materials & Design, 2022, 221: 110994. [4] 姬 浩. 7000系高强铝合金的发展及其在飞机上的应用[J]. 航空科学技术, 2015, 26(6): 75-78. Ji Hao. Development and application of 7000 high strength aluminum alloys on airplane[J]. Aeronautical Science & Technology, 2015, 26(6): 75-78. [5] Robson J D. Microstructural evolution in aluminium alloy 7050 during processing[J]. Materials Science and Engineering A, 2004, 382(1-2): 112-121. [6] Marceau R K W, Sha G, Lumley R N, et al. Evolution of solute clustering in Al-Cu-Mg alloys during secondary ageing[J]. Acta Materialia, 2010, 58(5): 1795-1805. [7] 韩念梅, 冯 迪, 唐建国, 等. 固溶处理对喷射成形7055铝合金组织及性能的影响[J]. 材料热处理学报, 2024, 45(7): 44-52. Han Nianmei, Feng Di, Tang Jianguo, et al. Effect of solution treatment on microstructure and properties of spray formed 7055 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2024, 45(7): 44-52. [8] 黄青梅, 程全士, 叶凌英, 等. 强化固溶对紧固件用Al-Zn-Mg-Cu合金组织与性能的影响[J]. 中国有色金属学报, 2021, 31(9): 2390-2402. Huang Qingmei, Cheng Quanshi, Ye Lingying, et al. Effects of enhanced solid solution on microstructure and properties of Al-Zn-Mg-Cu alloys used in fasteners[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(9): 2390-2402. [9] 谭国寅. 强化固溶对7075铝合金组织与冲击性能影响[J]. 兵器材料科学与工程, 2024, 47(2): 48-51. Tan Guoyin. Effect of strengthened solution on microstructure and impact properties of 7075 Al alloy[J]. Ordnance Material Science and Engineering, 2024, 47(2): 48-51. [10] 姜中涛, 汪 鑫, 周志明, 等. 双级固溶工艺对7050铝合金组织与力学性能的影响[J]. 金属热处理, 2022, 47(3): 102-106. Jiang Zhongtao, Wang Xin, Zhou Zhiming, et al. Effect of two-step solution process on microstructure and mechanical properties of 7050 aluminum alloy[J]. Heat Treatment of Metals, 2022, 47(3): 102-106. [11] Geng H C, Wang Y L, Zhu B, et al. Effect of solution treatment time on plasticity and ductile fracture of 7075 aluminum alloy sheet in hot stamping process[J]. Transactions of Nonferrous Metals Society of China, 2022, 11(32): 3516-3533. [12] 姚 璐, 李玉贵, 宋耀辉, 等. 镍基合金N06625晶粒长大行为及微观组织形貌[J]. 钢铁研究学报, 2023, 35(11): 1402-1410. Yao Lu, Li Yugui, Song Yaohui, et al. Grain growth behavior and microstructure morphology of nickel-based alloy N06625[J]. Journal of Iron and Steel Research, 2023, 35(11): 1402-1410. [13] 李龙飞, 张 阳, 林腾昌, 等. 含钒X80级管线钢奥氏体晶粒长大行为[J]. 钢铁, 2022, 57(3): 115-123. Li Longfei, Zhang Yang, Lin Tengchang, et al. Austenite grain growth behavior of X80 pipeline steel containing vanadium[J]. Iron and Steel, 2022, 57(3): 115-123. [14] 杨少朋, 尉文超, 胡芳忠, 等. 低碳齿轮钢18CrNiMo7-6奥氏体晶粒度长大规律[J]. 材料导报, 2021, 35(8): 8179-8183. Yang Shaopeng, Yu Wenchao, Hu Fangzhong, et al. The austenite grain growth behavior of low carbon gear steel 18CrNiMo7-6[J]. Materials Reports, 2021, 35(8): 8179-8183. [15] Huang Dianyuan, Lian Zhanghua, Zhao Zhaoyang. Isothermal β grain growth kinetics and mechanical properties of Ti-351 titanium alloy[J]. Materials Today Communications, 2024, 40: 109896. [16] Quan G Z, Zhang P, Ma Y Y, et al. Characterization of grain growth behaviors by BP-ANN and Sellars models for nickle-base superalloy and their comparisons[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(9): 2435-2448. |