[1] 许洪基. 齿轮手册[M]. 北京: 机械工业出版社, 2013.  [2] 陈 晖, 周细应. 汽车齿轮热处理工艺的研究进展[J]. 材料导报, 2010, 24(13): 93-96.  [3] 李宝奎, 卢金生. 大模数齿条深层渗碳工艺及畸变控制的试验研究[J]. 机械传动, 2020, 44(6): 160-163.  Li Baokui, Lu Jinsheng. Experimental study on deep carburizing process and distortion control of large modulus rack[J]. Journal of Mechanical Transmission, 2020, 44(6): 160-163.  [4] 王 鑫, 顾 敏. 齿轮渗碳淬火工艺过程及其畸变的模拟技术研究发展与展望[J]. 热加工工艺, 2019, 48(8): 13-18.  Wang Xin, Gu Min. Research development and prospects of simulation technique of gear carburizing quenching process and distortion[J]. Hot Working Technology, 2019, 48(8): 13-18.  [5] 朱小旭. 高速重载齿轮热处理工艺优化研究[D]. 大连: 大连理工大学, 2015.  [6] 刘竹丽, 陈 赟, 王祝新. 齿面残余应力对齿轮轮齿弯曲疲劳寿命的影响分析[J]. 郑州大学学报(工学版), 2020, 41(3): 53-56.  Liu Zhuli, Chen Yun, Wang Zhuxin. The influence of residual stress of tooth surface on bending fatigue life of gear tooth[J]. Journal of Zhengzhou University(Engineering Science), 2020, 41(3): 53-56.  [7] Wang J, Yang S, Li J, et al. Mathematical simulation and experimental verification of carburizing quenching process based on multi-field coupling[J]. Coatings, 2021, 11(9): 1132-1148.  [8] 贺笃鹏, 张国强, 王毛球, 等. 18CrNiMo7-6齿轮钢高温渗碳淬火变形数值模拟[J]. 金属功能材料, 2021, 28(5): 13-20.  He Dupeng, Zhang Guoqiang, Wang Maoqiu, et al. Simulation analysis of high temperature carburizing and quenching deformation of gear steel 18CrNiMo7-6[J]. Metallic Functional Materials, 2021, 28(5): 13-20.  [9] 姜 辉. 钢制薄壁齿轮热处理变形的有限元模拟与分析[D]. 西安: 西安理工大学, 2022.  [10] 张玉全, 陈 勇, 臧立彬, 等. 合金元素的变化对20MnCr5钢齿轮渗碳淬火后性能的影响[J]. 金属热处理, 2022, 47(10): 78-87.  Zhang Yuquan, Chen Yong, Zang Libin, et al. Influence of alloying element change on properties of 20MnCr5 steel gear after carburizing and quenching[J]. Heat Treatment of Metals, 2022, 47(10): 78-87.  [11] 王志强. 基于多场耦合的齿轮热处理畸变控制[D]. 南京: 南京航空航天大学, 2022.  [12] 李 江. 齿轮渗碳淬火热处理的多物理场耦合及性能预测[D]. 北京: 中国矿业大学, 2024.  [13] 李辉平, 赵国群, 贺连芳, 等. 基于有限元方法的渗碳浓度场数值模拟[J]. 金属热处理, 2008, 33(10): 79-83.  Li Huiping, Zhao Guoqun, He Lianfang, et al. Numerical simulation of carburizing concentration field using finite element method[J]. Heat Treatment of Metals, 2008, 33(10): 79-83.  [14] 赵振东. 渗碳表面碳浓度计算[J]. 热加工工艺, 1990(4): 12-14.  Zhao Zhendong. Compute of the surface carbon content for carburizing[J]. Hot Working Technology, 1990(4): 12-14.  [15] 冯 玮, 乔靖乾. 渗碳温度对20CrMnTi齿圈渗碳层的影响[J]. 热加工工艺, 2022, 51(14): 153-157.  Feng Wei, Qiao Jingqian. Effect of carburizing temperature on carburizing layer of 20CrMnTi gear ring[J]. Hot Working Technology, 2022, 51(14): 153-157.  [16] Li M V, Niebuhr D V, Meekisho L L, et al. A computational model for the prediction of steel hardenability[J]. Metallurgical and Materials Transactions B, 1998, 29(3): 661-672.  [17] 吴轲源, 刘云鹏, 李孔斋, 等. 17-4PH不锈钢连续冷却转变及相变动力学[J]. 金属热处理, 2022, 47(6): 161-167.  Wu Keyuan, Liu Yunpeng, Li Kongzhai, et al. Continuous cooling transformation and phase transformation kinetics of 17-4PH stainless steel[J]. Heat Treatment of Metals, 2022, 47(6): 161-167.  [18] Lee S J, Park K S. Prediction of martensite start temperature in alloy steels with different grain sizes[J]. Metallurgical and Materials Transactions A, 2013, 44(8): 3423-3427.  [19] Maynier P, Dollet J, Bastien P. Prediction of microstructure via empirical formulae based on CCT diagrams[J]. Metallurgical Society AIME, 1978, 107: 163-178. |