[1] Li M C, Chen D L, Liu S X, et al. Online learning method based on support vector machine for metallographic image segmentation[J]. Signal Image and Video Processing, 2021, 15: 571-578. [2] 段献宝, 何惠珍, 李平平, 等. 基于深度卷积神经网络的钢材微观组织分类识别[J]. 铁道车辆, 2022, 60(1): 43-47. Duan Xianbao, He Huizhen, Li Pingping, et al. Classification and identification of steel microstructure based on deep convolution neural network[J]. Rolling Stock, 2022, 60(1): 43-47. [3] Azimi S M, Britz D, Engstler M, et al. Advanced steel microstructural classification by deep learning methods[J]. Scientific Reports, 2018, 8(1): 21-28. [4] Gola J, Webel J, Britz D, et al. Objective microstructure classification by support vector machine (SVM) using a combination of morphological parameters and textural features for low carbon steels[J]. Computational Materials Science, 2019, 160: 186-196. [5] Tsutsui K, Terasaki H, Uto K, et al. A methodology of steel microstructure recognition using SEM images by machine learning based on textural analysis[J]. Materials Today Communications, 2020, 25(12): 101514. [6] 孙 攀, 石秀东, 何英杰. 基于特征融合和GWO-SVM的铸铁金相组织分类技术研究[J]. 制造业自动化, 2023, 45(4): 34-38. Sun Pan, Shi Xiudong, He Yingjie. Metallographic classification of cast iron based on feature fusion and GWO-SVM[J]. Manufacturing Automation, 2023, 45(4): 34-38. [7] 胡名琪, 刘秋明, 陈辉明, 等. 基于改进残差网络与迁移学习的铜合金金相图分类方法[J]. 有色金属科学与工程, 2024, 15(5): 690-699. Hu Mingqi, Liu Qiuming, Chen Huiming, et al. Classification method of copper alloy metallographic diagram based on improved residual network and transfer learning[J]. Nonferrous Metals Science and Engineering, 2024, 15(5): 690-699. [8] 张艳飞, 张永志, 公维炜, 等. 基于GoogLeNet Inception V3模型的火电用钢金相组织智能识别[J]. 材料导报, 2024, 38(17): 247-253. Zhang Yanfei, Zhang Yongzhi, Gong Weiwei, et al. Intelligent recognition of microstructure of steel in thermal power unit based on GoogLeNet Inception V3 model[J]. Materials Reports, 2024, 38(17): 247-253. [9] 黄学雨, 贺怀宇, 林慧敏, 等. 基于特征聚合的铜合金金相图分类识别方法[J]. 计算机应用, 2023, 43(8): 2593-2601. Huang Xueyu, He Huaiyu, Lin Huimin, et al. Classification and recognition method of copper alloy metallograph based on feature aggregation[J]. Journal of Computer Applications, 2023, 43(8): 2593-2601. [10] 李 杰, 付冬梅. 金相图像均衡化和多尺度模板二值降噪方法研究[J]. 铸造技术, 2018, 39(11): 2433-2439. Li Jie, Fu Dongmei. Equilibrium of metallographic image and the research of multiscale template binary noise reduction[J]. Foundry Technology, 2018, 39(11): 2433-2439 [11] 曾培益. 基于增量学习的多尺度钢材微观组织图像分类[J]. 计算机科学, 2024, 51(S1): 302-309. Zeng Peiyi. Classification of multiscale steel microstructure images based on incremental learning[J]. Computer Science, 2024, 51(S1): 302-309. [12] Gao S H, Cheng M M, Zhao K, et al. Res2net: A new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(2): 652-662. [13] 朱 丽, 王新鹏, 付海涛, 等. 基于注意力机制的细粒度图像分类[J]. 吉林大学学报(理学版), 2023, 61(2): 371-376. Zhu Li, Wang Xinpeng, Fu Haitao, et al. Fine-grained image classification based on attention mechanism[J]. Journal of Jilin University (Science Edition), 2023, 61(2): 371-376. [14] 李云红, 郭 越, 谢蓉蓉, 等. 注意力机制和多尺度特征融合的细粒度图像分类[J]. 重庆理工大学学报(自然科学), 2024, 38(12): 155-164. Li Yunhong, Guo Yue, Xie Rongrong, et al. Attentional mechanisms and multiscale feature fusion for fine-grained image classification[J]. Journal of Chongqing University of Technology(Natural Science), 2024, 38(12): 155-164. [15] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778. [16] Li Y, Li X, Yang J. Spatial group-wise enhance: Enhancing semantic feature learning in CNN[C]//16th Asian Conference on Computer Vision, Proceedings, Part V. 2022: 687-702. [17] 陈德阳, 唐 智, 何牧耕. 基于OCR-UNet的金属表面缺陷分割[J]. 组合机床与自动化加工技术, 2023(11): 169-173. Chen Deyang, Tang Zhi, He Mugeng. Segmentation of metal surface defect based on OCR-UNet[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2023(11): 169-173. [18] Song Y, He Z, Qian H, et al. Vision transformers for single image dehazing[J]. IEEE Transactions on Image Processing, 2023, 32: 1927-1941. [19] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 7132-7141. [20] Misra D, Nalamada T, Arasanipalai A U, et al. Rotate to attend: Convolutional triplet attention module[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2021: 3139-3148. [21] 张永志, 辛全忠, 王永亮, 等. 基于迁移学习的钢金相组织分类与识别方法的研究[J]. 材料导报, 2021, 35(24): 24152-24157. Zhang Yongzhi, Xin Quanzhong, Wang Yongliang, et al. Research on classification and recognition method of steel metallographic structure based on transfer learning[J]. Materials Reports, 2021, 35(24): 24152-24157. |