[1] 张菽浪. Fe-Mn-Al-C低密度钢的现状[J]. 特钢技术, 2019, 25(4): 55. [2] 孙 建, 黄贞益, 李景辉, 等. Fe-Mn-Al-C系低密度钢热处理研究进展[J]. 材料导报, 2023, 37(14): 136-147. Sun Jian, Huang Zhenyi, Li Jinghui, et al. Research progress in heat treatment of Fe-Mn-Al-C system low-density steel[J]. Material Reports, 2023, 37(14): 136-147. [3] Bai S B, Chen Y A, Liu X, et al. Research status and development prospect of Fe-Mn-C-Al system low-density steels[J]. Journal of Materials Research and Technology, 2023, 25: 1537-1559. [4] Ding Hua, Liu Degang, Cai Minghui, et al. Austenite-based Fe-Mn-Al-C lightweight steels: Research and prospective[J]. Metals, 2022, 12(10): 1572. [5] 孔 玲, 王玉辉, 杨浩坤, 等. Fe-Mn-Al-C系奥氏体基低密度钢使役性能研究进展[J]. 机械工程学报, 2024, 60(8): 34-47. Kong Ling, Wang Yuhui, Yang Haokun, et al. Research situation of service performance of Fe-Mn-Al-C austenitic low density steel[J]. Journal of Mechanical Engineering, 2024, 60(8): 34-47. [6] 史津铭, 庞启航, 李维娟, 等. 轻质Fe-Mn-Al-C系高强钢的组织与性能研究进展及其在海洋工程中的应用展望[J]. 上海金属, 2024, 46(3): 13-22, 32. Shi Jinmin, Pang Qihang, Li Weijuan, et al. Progress in research on microstructure and properties of lightweight Fe-Mn-Al-C series high-strength steels and their prospective application to ocean engineering[J]. Shanghai Metals, 2024, 46(3): 13-22, 32. [7] Ha M C, Koo J M, Lee J K, et al. Tensile deformation of a low density Fe-27Mn-12Al-0.8C duplex steel in association with ordered phases at ambient temperature[J]. Materials Science and Engineering A, 2013, 586: 276-283. [8] 林方敏, 邢 梅, 唐立志, 等. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 158-165. Lin Fangmin, Xing Mei, Tang Lizhi, et al. Research progress of Fe-Mn-Al-C low-density steels and their strengthening mechanisms[J]. Materials Reports, 2023, 37(5): 158-165. [9] 徐 文, 段 伟, 卢君宜. Fe-6Al-4Mn-0.6C高强轻质钢固溶处理工艺研究[J]. 热加工工艺, 2024, 53(12): 129-132. Xu Wen, Duan Wei, Lu Junyi. Study on solution treatment process of Fe-6Al-4Mn-0.6C high strength lightweight steel[J]. Hot Working Technology, 2024, 53(12): 129-132. [10] Li F, Shang X, Zhao J, et al. Effects of annealing temperature on microstructure and mechanical properties of a low density δ-TRIP steel plate via intercritical quenching-annealing process[J]. Materials Science and Engineering A, 2024, 900: 146503. [11] 郝 宇. 锰含量和热处理对Fe-Mn-Al-C钢组织及力学性能影响的研究[D]. 湘潭: 湘潭大学, 2020. [12] Song W, Ingendahl T, Bleck W. Control of strain hardening behavior in high-Mn austenitic steels[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(3): 546-556. [13] 宋仁伯, 霍巍丰, 周乃鹏, 等. Fe-Mn-Al-C系中锰钢的研究现状与发展前景[J]. 工程科学学报, 2020, 42(7): 814-828. Song Renbo, Huo Weifeng, Zhou Naipeng, et al. Research progress and prospect of Fe-Mn-Al-C medium Mn steels[J]. Chinese Journal of Engineering, 2020, 42(7): 814-828. [14] 杨富强. 汽车用Fe-Mn-Al系轻质高强钢制备工艺及变形机理研究[D]. 北京: 北京科技大学, 2015. [15] 侯美伶, 李晨潇, 孔祥伟, 等. 热处理工艺对Fe-Mn-Al-C钢组织和性能的影响[J]. 特殊钢, 2023, 44(2): 96-100. Hou Meiling, Li Chenxiao, Kong Xiangwei, et al. Effect of heat treatment process on microstructure and properties of Fe-Mn-Al-C steel[J]. Special Steel, 2023, 44(2): 96-100. [16] 李思远. 热处理对轧态Fe-Mn-Al-C钢组织与力学性能影响研究[D]. 太原: 中北大学, 2023. [17] Banis A, Gomez A, Bliznuk V, et al. Microstructure evolution and mechanical behavior of Fe-Mn-Al-C low-density steel upon aging[J]. Materials Science and Engineering A, 2023, 875: 145109. [18] Li G Y, Kong Lu, Liu E Z, et al. Effect of agingtreatment on the microstructure and mechanical properties of Fe-Mn-Al-C low density steel[J]. IOP Conference Series: Materials Science and Engineering, 2022, 1249: 012053. [19] 周云霄. 时效处理对Fe-Mn-Al-C低密度钢析出相和力学性能的影响[D]. 重庆: 重庆大学, 2021. Zhou Yunxiao. Effects of aging treatment on microstructure and properties of Fe-Mn-Al-C low density steel[D]. Chongqing: Chongqing University, 2021. [20] 霍永涛, 戴 伟, 何燕霖, 等. 固溶处理对轻质高强钢组织和力学性能的影响[J]. 上海金属, 2022, 44(4): 69-75. Huo Yongtao, Dai Wei, He Yanlin, et al. Effect of solution treatment on microstructure and mechanical properties of light-weight high-strength steel[J]. Shanghai Metals, 2022, 44(4): 69-75. [21] Kang L, Yuan H, Li H Y, et al. Enhanced mechanical properties of Fe-Mn-Al-C low density steel via aging treatment[J]. Frontiers in Materials, 2021, 8: 680776. [22] 章小峰, 李家星, 万亚雄, 等. 退火工艺对冷轧中锰中铝低密度钢组织与性能的影响[J]. 材料导报, 2021, 35(16): 16099-16103. Zhang Xiaofeng, Li Jiaxing, Wan Yaxiong, et al. Effect of annealing process on microstructure and properties of cold rolled medium manganese medium aluminum low density steel[J]. Materials Reports, 2021, 35(16): 16099-16103. [23] 李 烨, 夏鹏成, 谢 鲲, 等. 退火温度对Fe-Mn-Al-C钢组织和拉伸性能的影响[J]. 金属热处理, 2021, 46(4): 77-82. Li Ye, Xia Pengcheng, Xie Kun, et al. Effect of annealing temperature on microstructure and tensile properties of Fe-Mn-Al-C steel[J]. Heat Treatment of Metals, 2021, 46(4): 77-82. [24] 牛奕茗, 张圣浩, 张羽童, 等. 退火处理对热轧Fe-12Mn-8Al-0.8C轻质钢组织性能的影响[J]. 材料与冶金学报, 2022, 21(1): 60-65. Niu Yiming, Zang Shenghao, Zhang Yutong, et al. Effect of annealing treatment on the microstructures and properties of a hot rolled Fe-12Mn-8Al-0.8C lightweight steel[J]. Journal of Materials and Metallurgy, 2022, 21(1): 60-65. [25] 陆海涛. Fe-Mn-Al-C轻质钢静态变形条件下微观组织演变及协同强化机制研究[D]. 太原: 中北大学, 2024. [26] 付锡彬. 奥氏体低密度钢热变形及κ碳化物控制研究[D]. 马鞍山: 安徽工业大学, 2024. [27] 臧永昌. Fe-Mn-Al-C系低密度钢热变形行为及固溶时效工艺研究[D]. 秦皇岛: 燕山大学, 2023. Zang Yongchang. Hot deformation behavior and solution and aging process of Fe-Mn-Al-C low density steel[D]. Qinghuangdao: Yanshan University, 2023. [28] 周占明, 唐 荻, 赵征志, 等. 固溶温度对Fe-22.8Mn-8.48Al-0.86C低密度钢组织及性能的影响[J]. 材料热处理学报, 2017, 38(9): 123-127. Zhou Zhanming, Tang Di, Zhao Zhengzhi, et al. Effect of solution temperature on microstructure and mechanical properties of Fe-22.8Mn-8.48Al-0.86C low density steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(9): 123-127. [29] 王 萍, 郭爱民, 侯清宇, 等. 时效态Fe-Mn-Al-C钢的性能和变形机制[J]. 材料研究学报, 2021, 35(3): 184-192. Wang Ping, Guo Aimin, Hou Qingyu, et al. Properties and deformation mechanism of aged Fe-Mn-Al-C steel[J]. Chinese Journal of Materials Research, 2021, 35(3): 184-192. [30] 代智鹏, 杨 健, 张庆松, 等. 汽车用齿轮钢奥氏体晶粒长大与第二相粒子控制技术研究进展[J]. 工程科学学报, 2023, 45(11): 1878-1895. Dai Zhipeng, Yang Jian, Zhang Qingsong, et al. Research progress on austenite grain growth and second-phase particle control technology in automotive gear steel[J]. Chinese Journal of Engineering, 2023, 45(11): 1878-1895. [31] 梁 英, 苗 钊. Nb微合金化16MnK钢板的生产[J]. 宽厚板, 2003, 9(1): 13-15. Liang Ying, Miao Zhao. Production of Nb-microalloying 16MnK steel plate[J]. Wide and Heavy Plate, 2003, 9(1): 13-15. [32] 江海涛, 唐 荻, 米振莉, 等. 含铌TRIP钢连续退火后的组织性能及强化机理[J]. 北京科技大学学报, 2010, 32(2): 201-206. Jiang Haitao, Tang Di, Mi Zhenli, et al. Microstructure, mechanical properties and strengthening mechanism of Nb-bearing TRIP steel after continuous annealing process[J]. Journal of University of Science and Technology Beijing, 2010, 32(2): 201-206. [33] 闫永旺, 范秀风. 铌含量对H13钢微观组织和性能的影响[J]. 热加工工艺, 2023, 52(8): 36-38. Yan Yongwang, Fan Xiufeng. Effects of Nb content on microstructure and properties of H13 steel[J]. Hot Working Technology, 2023, 52(8): 36-38. [34] 郭金宇, 刘仁东, 孙建伦, 等. 含铌TRIP钢的组织与力学性能研究[C]//第七届(2009)中国钢铁年会大会论文集(中). 北京: 冶金工业出版社, 2009: 2666-2669. [35] Baruj A, Kikuchi T, Kajiwara S, et al. Effect of pre-deformation of austenite on shape memory properties in Fe-Mn-Si-based alloys containing Nb and C[J]. Materials Transactions, 2002, 43(3): 585-588. [36] 宋宏伟, 李慧蓉, 王 哲, 等. 稀有金属Nb对Fe-Mn-Al-C系轻质钢耐腐蚀性能的影响[J]. 热加工工艺, 2020, 49(16): 60-63. Song Hongwei, Li Huirong, Wang Zhe, et al. Effect of rare metal Nb on corrosion resistance of Fe-Mn-Al-C lightweight steel[J]. Hot Working Technology, 2020, 49(16): 60-63. [37] 魏 巍, 陈 蓬, 李小武. 铌对热轧奥氏体基双相钢显微组织及力学性能的影响[C]//中国材料大会. 2021: 335-340. [38] Zhao Ting, Rong Shengwei, Hao Xiaohong, et al. Effect of Nb-V microalloying on hot deformation characteristics and microstructures of Fe-Mn-Al-C austenitic steel[J]. Materials Characterization, 2022, 183: 111595. [39] Bai Y P, Jiao D D, Li J P, et al. Effect of Nb content on the stacking fault energy, microstructure and mechanical properties of Fe-25Mn-9Al-8Ni-1C alloy[J]. Materials Today Communications, 2022, 31: 103554. [40] Huo W F, Song R B, Zhang Z R, et al. Effect of Nb contents on microstructure characteristics and yielding behavior of Fe-4Mn-2Al-0.2C steel[J]. Materials Science and Engineering A, 2021, 819: 141457. [41] Ma Tao, Gao Jianxin, Li Huirong, et al. Effect of Nb on microstructure and mechanical properties of Fe-28Mn-10Al-C low-density steel[J]. Rare Metal Materials and Engineering, 2021, 50(3): 860-866. [42] 马 涛, 李佳祺, 徐鹏飞, 等. Nb对Fe-Mn-Al-C低密度钢显微组织及耐蚀性的影响[J]. 中国冶金, 2024, 34(4): 127-137. Ma Tao, Li Jiaqi, Xu Pengfei, et al. Effect of Nb on microstructure and corrosion resistance of Fe-Mn-Al-C low density steel[J]. China Metallurgy, 2024, 34(4): 127-137. [43] 钱 月, 孙蓉蓉, 张文怀, 等. Nb对Fe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332. Qian Yue, Sun Rongrong, Zhang Wenhuai, et al. Effect of Nb on microstructure and corrosion resistance of Fe22Cr5Al3Mo alloy[J]. Acta Metallurgica Sinica, 2020, 56(3): 321-332. |