[1] 王国栋, 田 勇, 李海军, 等. 工程机械用钢前沿生产技术(一)[J]. 轧钢, 2024, 41(1): 1-12. Wang Guodong, Tian Yong, Li Haijun, et al. Advanced manufacturing techniques for construction machinery steel (part 1)[J]. Steel Rolling, 2024, 41(1): 1-12. [2] 刘汉卿. 工程机械用钢应用现状和发展前景[J]. 冶金与材料, 2022, 42(5): 171-172. Liu Hanqing. The current status and development prospects of steel applications in construction machinery[J]. Metallurgy and Materials, 2022, 42(5): 171-172. [3] 邓通武. 钒对25CrMnB钢履带板耐磨性能的影响[J]. 特殊钢, 2019, 40(5): 67-70. Deng Tongwu. Effect of vanadium on wear resistance of track shoe of steel 25CrMnB[J]. Special Steel, 2019, 40(5): 67-70. [4] Kennett S C, Krauss G, Findley K O. Prior austenite grain size and tempering effects on the dislocation density of low-C Nb-Ti microalloyed lath martensite[J]. Scripta Materialia, 2015, 107: 123-126. [5] Hutchinson B, Hagström J, Karlsson O, et al. Microstructures and hardness of as-quenched martensites (0.1-0.5%C)[J]. Acta Materialia, 2011, 59: 5845-5858. [6] Morsdorf L, Tasan C C, Ponge D, et al. 3D structural and atomic-scale analysis of lath martensite: Effect of the transformation sequence[J]. Acta Materialia, 2015, 95: 366-377. [7] 夏 博, 王 斌, 张 鹏, 等. 回火温度对高强弹簧钢微观组织和冲击性能的影响[J]. 材料研究学报, 2023, 37(5): 341-352. Xia Bo, Wang Bin, Zhang Peng, et al. Effect of tempering temperature on microstructure and impact properties of two high-strength leaf spring steels[J]. Chinese Journal of Materials Research, 2023, 37(5): 341-352. [8] Yang G, Wang C, Liu X, et al. Embrittlement mechanism due to slow cooling during quenching for M152 martensitic heat resistant steel[J]. Journal of Iron and Steel Research, International, 2010, 17(6): 60-66. [9] Meng Y, Deng J, Zhang Y, et al. Tribological properties of textured surfaces fabricated on AISI 1045 steels by ultrasonic surface rolling under dry reciprocating sliding[J]. Wear, 2020, 460-461: 203488. [10] Chen C, Lv B, Ma H, et al. Wear behavior and the corresponding work hardening characteristics of hadfield steel[J]. Tribology International, 2018, 121: 389-399. [11] Hua M, Wei X C, Li J. Friction and wear behavior of SUS 304 austenitic stainless steel against Al2O3 ceramic ball under relative high load[J]. Wear, 2008, 265(5/6): 799-810. [12] Rasool G, Mridha S, Stack M M. Mapping wear mechanisms of TiC/Ti composite coatings[J]. Wear, 2015, 328-329: 498-508. [13] Dai Y, Yang J. Effect of heat treatment on the hardness and wear resistance of high manganese steel[J]. Materials Science and Engineering A, 2019, 755: 105-113. [14] Aissat S, Zaid M, Sadeddine A. Correlation between hardness and abrasive wear of grinding balls[J]. Metallurgical Research and Technology, 2020, 117: 2020062. [15] Li Z, Liu X. Relationship between microstructure and wear resistance of high-speed steel[J]. Journal of Materials Science and Technology, 2021, 37(9): 1516-1524. [16] Rendón J, Olsson M. Abrasive wear resistance of some commercial abrasion resistant steels evaluated by laboratory test methods[J]. Wear, 2009, 267: 2055-2061. [17] Li C R, Deng X T, Huang L, et al. Effect of temperature on microstructure, properties and sliding wear behavior of low alloy wear-resistant martensitic steel[J]. Wear, 2020, 442-443: 203125. |