[1] 崔忠圻. 金属学与热处理[M]. 北京: 机械工业出版社, 2000. [2] 娄延春. 铸造手册: 铸钢卷[M]. 北京: 机械工业出版社, 2011. [3] Zackay V F, Parker E R, Fahr D, et al. The enhancement of ductility on high-strength steel[J]. Transactions of Applied Structures Mechanics, 1967, 60: 252-258. [4] Zhang W, Guo S, Liu S, et al. Quantitatively assessing the contributions of temperature-dependent deformation-induced martensitic transformation to uniform elongation and work hardening of TRIP-assisted duplex stainless steel via crystal plasticity[J]. Materials Science and Engineering A, 2023, 887: 145758. [5] 王存宇, 常 颖, 周峰峦, 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410. Wang Cunyu, Chang Ying, Zhou Fengluan, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility[J]. Acta Metallurgica Sinica, 2020, 56(4): 400-410. [6] Dai Z, Chen H, Ding R, et al. Fundamentals and application of solid-state phase transformations for advanced high strength steels containing metastable retained austenite[J]. Materials Science and Engineering R, 2021, 143: 100590. [7] Foroozmehr F, Verreman Y, Chen J, et al. Effect of inclusions on fracture behavior of cast and wrought 13%Cr-4%Ni martensitic stainless steels[J]. Engineering Fracture Mechanics, 2017, 175: 262-278. [8] 吴 锜, 熊云龙, 魏彦鹏, 等. Ni元素对Cr-Ni-Mn型铸造不锈钢TRIP效应的影响[J]. 铸造, 2021, 70(12): 1406-1411. Wu Qi, Xiong Yunlong, Wei Yanpeng, et al. Effect of nickel on TRIP effect of Cr-Ni-Mn cast stainless steel[J]. Foundry, 2021, 70(12): 1406-1411. [9] 雍岐龙, 孙新军, 郑 磊, 等. 钢铁材料中第二相的作用[J]. 科技创新导报, 2009(8): 2-3. [10] Schaeffler A L. Constitution diagram for stainless steel weld metal[J]. Metal Progress, 1949, 56(11): 680. [11] 张明达, 胡春东, 曹文全, 等. 基于Thermo-Calc的中锰中铝Fe-Mn-Al-C低密度钢类Schaeffler相图绘制与评估[J]. 工程科学学报, 2016, 38(5): 682-690. Zhang Mingda, Hu Chundong, Cao Wenquan, et al. Plotting and evaluation on the Schaeffler diagram of Fe-Mn-Al-C low-density alloys with medium manganese and aluminum contents based on Thermo-Calc software[J]. Chinese Journal of Engineering, 2016, 38(5): 682-690. [12] Weidner A, Martin S, Klemm V, et al. Stacking faults in high-alloyed metastable austenitic cast steel observed by electron channelling contrast imaging[J]. Scripta Materialia, 2011, 64(6): 513-516. [13] 徐祖耀. 马氏体相变与马氏体[M]. 2版. 北京: 科学出版社, 1999. [14] 戴起勋, 王安东, 程晓农. 低温奥氏体钢的层错能[J]. 钢铁研究学报, 2002, 14(4): 34-37. [15] Curtze S, Kuokkala V T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate[J]. Acta Materialia, 2010, 58(15): 5129-5141. [16] 鲁法云, 杨 平, 孟 利, 等. 18Mn TRIP钢温变形过程中马氏体逆相变行为[J]. 金属学报, 2010, 46(10): 1153-1160. Lu Fayun, Yang Ping, Meng Li, et al. Behavior of martensite reverse transformation in 18Mn TRIP steel during warm deformation[J]. Acta Metallurgica Sinica, 2010, 46(10): 1153-1160. [17] 张翠翠, 秦 森, 毛 磊. 外加入第二相颗粒对钢铁材料组织性能的影响[J]. 河北科技大学学报, 2014, 35(2): 159-163. Zhang Cuicui, Qin Sen, Mao Lei. Effects of the second phase particle addition on microstructure and properties of iron and steel material[J]. Journal of Hebei University of Science and Technology, 2014, 35(2): 159-163. [18] Liu J, Jin Y, Fang X, et al. Corrigendum: Dislocation strengthening without ductility trade-off in metastable austenitic steels[J]. Scientific Reports, 2018, 8(1): 46938. |