[1] 石海斌. 华菱涟钢1100 MPa级超高强钢实现批量供货[Z/OL]. 中国政府网 2018-09-27[2018-115] . [2] 郑建平, 汪 杰, 黄贞益, 等. 回火温度对Q960E高强钢组织和性能的影响[J]. 热处理, 2016, 6(31): 16-19. Zheng Jianping, Wang Jie, Huang Zhenyi, et al. Effect of tempering temperatures on microstructure and properties of Q960E high strength steel[J]. Heat Treatment, 2016, 6(31): 16-19. [3] Niikura M, Morris J W. Thermal processing of ferritic 5Mn steel for toughness at cryogenic temperatures[J]. Metallurgical Transactions A, 1980, 11(9): 1531-1540. [4] 安庆生, 万德成, 马少康, 等. 逆相变退火对中锰钢组织演变和力学性能的影响[J]. 金属热处理, 2024, 49(6): 36-42. An Qingsheng, Wan Decheng, Ma Shaokang, et al. Effect of reverse phase transformation annealing on microstructure evolution and mechanical properties of medium manganese steel[J]. Heat Treatment of Metals, 2024, 49(6): 36-42. [5] 张盛豪, 王 宝, 李思佳, 等. 奥氏体逆相变退火温度对含铜中锰钢组织和性能的影响[J]. 金属热处理, 2025, 50(2): 96-101. Zhang Shenghao, Wang Bao, Li Sijia, et al. Influence of austenite reverse transformation annealing temperature on microstructure and properties of Cu-containing medium manganese steel[J]. Heat Treatment of Metals, 2025, 50(2): 96-101. [6] 刘明珠, 丁 桦, 邹宇明. 部分奥氏体逆转变工艺对Fe-8Mn-0.2C-3Al中锰钢组织性能的影[J]. 金属热处理, 2025, 50(2): 90-95. Liu Mingzhu, Ding Hua, Zou Yuming. Effect of partial austenite reverse transformation process on microstructure and mechanical properties of Fe-8Mn-0.2C-3Al medium Mn steel[J]. Heat Treatment of Metals, 2025, 50(2): 90-95. [7] Liu L, He B B, Cheng G J, et al. Optimum properties of quenching and partitioning steels achieved by balancing fraction and stability of retained austenite[J]. Scripta Materialia, 2018, 150: 1-6. [8] Zhao C, Zhang C, Cao W Q, et al. Austenite thermal stabilization through the concentration of manganese and carbon in the 0.2C-5Mn steel[J]. ISIJ International, 2014, 54(12): 2875-2880. [9] 谢振家, 尚成嘉, 周文浩, 等. 低合金多相钢中残余奥氏体对塑性和韧性的影响[J]. 金属学报, 2016, 52(2): 224-232. Xie Zhenjia, Shang Chengjia, Zhou Wenhao, et al. Effect of retained austenite on ductility and toughness of a low alloyed multiphase steel[J]. Acta Metallurgica Sinica, 2016, 52(2): 224-232. [10] 康 健, 袁 国, 王国栋. 亚温淬火下组织形态对高强低合金钢冲击韧性的影响[J]. 材料热处理学报, 2015, 36(12): 152-157. Kang Jian, Yuan Guo, Wang Guodong. Effect of microstructure on impact toughness of a high strength low alloy steel processed by intercritical quenching[J]. Transactions of Materials and Heat Treatment, 2015, 36(12): 152-157. [11] 周双双, 刘希琴, 刘子利, 等. 正火工艺对冷轧态低合金低温钢组织及拉伸性能的影响[J]. 材料导报, 2017, 31(6): 98-104. Zhou Shuangshuang, Liu Xiqin, Liu Zili, et al. Effect of normalizing process on microstructure evolution and tensile properties of cold-rolled low-alloy cryogenic steel[J]. Materials Reports, 2017, 31(6): 98-104. [12] Chen J, Lv M Y, Liu Z Y, et al. Influence of heat treatments on the microstructural evolution and resultant mechanical properties in a low carbon medium Mn heavy steel plate[J]. Metallurgical and Materials Transactions A, 2016, 47: 2300-2312. [13] 邱昌瀚, 罗海文, 刘 军, 等. 加热工艺对中锰钢残留奥氏体含量的影响[J]. 钢铁, 2013, 48(12): 63-67. Qiu Changhan, Luo Haiwen, Liu Jun, et al. Effect of heating process on the amount of austenite retained in medium Mn alloyed TRIP steel[J]. Iron and Steel, 2013, 48(12): 63-67. [14] Luo H W, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel[J]. Acta Materialia, 2011, 59: 4002-4014. [15] Nakada N, Mizutani K, Tsuchiyam T, et al. Difference in transformation behavior between ferrite and austenite formations in medium manganese steel[J]. Acta Materialia, 2014, 65: 251-258. [16] Han J, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel[J]. Acta Materialia, 2014, 78: 369-377. |