[1] Li H, Liu Y, Liu B, et al. Synergistic enhancement of strength and ductility of cobalt-free maraging steel via nanometer-scaled microstructures[J]. Materials Science and Engineering A, 2022, 842: 143099. [2] Song W, Zhang W, Jörg V A, et al. κ-phase formation in Fe-Mn-Al-C austenitic steels[J]. Steel Research International, 2015, 86(10): 1161-1169. [3] Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544(7651): 460-464. [4] 罗海文, 沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512. Luo Haiwen, Shen Guohui. Progress andperspective of ultra-high strength steels having high toughness[J]. Acta Metallurgica Sinica, 2020, 56(4): 494-512. [5] 董亚光, 陈 尚, 王俊升, 等 含BCC/B2共格结构多主元合金研究进展[J]. 材料工程, 2021, 49(2): 1-9. Dong Yaguang, Cheng Shang, Wang Junsheng, et al. Research progress in multi-principal element alloys containing coherent BCC/B2 structure[J]. Journal of Materials Engineering, 2021, 49(2): 1-9. [6] Jiao Z B, Liu C T. Ultrahigh-strength steels strengthened by nanoparticles[J]. Science Bulletin, 2017, 62(15): 1043-1044. [7] 肖月华, 彭 博, 范爱琴, 等. Fe-Ni-Al超高强度双相钢的复合析出行为和强化机制[J]. 钢铁研究学报, 2023, 35(7): 873-880. Xiao Yuehua, Peng Bo, Fan Aiqin, et al. Synergistic precipitation behavior and strengthening mechanism of Fe-Ni-Al ultra strong dual phase steel[J]. Journal of Iron and Steel Research, 2023, 35(7): 873-880. [8] Zhang X Y, Wang J L, Liu X Y, et al. Developing NiAl-strengthened HSLA steels by controlling nanoscale precipitation and high-angle boundaries[J]. Materials Science and Engineering A, 2022, 861: 144355. [9] Zhang X Y, Wang J L, Liu X Y, et al. Impact toughness and fracture propagation mechanism of NiAl precipitation-strengthened HSLA steels[J]. Materials and Design, 2024, 241: 112927. [10] 雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. [11] Saastamoinen A, Kaislainen A, Porter D, et al. The eftecr of finish roling temperature and tempering on the microstructure, mechanical properties and dislocation density of direct-quenched steel[J]. Materials Characterization, 2018, 139: 1-10. [12] GöKen M, Kempf M. Microstructural properties of superalloys investigated by nanoindentations in an atomic force microscope[J]. Acta Materialia, 1999, 47(3): 1043-1052.[13] Xu S S, Zhao Y, Chen D, et al. Nanoscale precipitation and its influence on strengthening mechanisms in an ultra-high strength low-carbon steel[J]. International Journal of Plasticity, 2019, 113: 99-110. [14] Kamikawa N, Sato K, Miyamoto G, et al. Stress-strain behavior of ferrite and bainite with nano-precipitation in low carbon steels[J]. Acta Materialia, 2015, 83: 383-396. [15] Jiao Z B, Luan J H, Zhang Z W, et al. High-strength steels hardened mainly by nanoscale NiAl precipitates[J]. Scripta Materialia, 2014, 87: 45-48. [16] Zhang W X, Cong Y B, Wang J, et al. Revealing the effects of martensitic transformation and dislocation slip in austenite on the micromechanical behaviors of a 9Ni steel using crystal plasticity finite element method[J]. International Journal of Plasticity, 2024, 174: 103869. [17] 周 成, 赵 坦, 叶其斌, 等. 回火温度对1000 MPa级NiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569. Zhou Cheng, Zhao Tan, Ye Qibin, et al. Effects of tempering temperature on microstructure and low-temperature toughness of 1000 MPa grade NiCrMoV low carbon alloyed steel[J]. Acta Metallurgica Sinica, 2022, 58(12): 1557-1569. |