[1] 马 潇, 徐 乐, 王毛球. 25Cr3Mo3NiNbZr钢和PCrNi3MoV钢的耐磨性能[J]. 金属热处理, 2019, 44(10): 29-35. Ma Xiao, Xu Le, Wang Maoqiu. Wear resistance of 25Cr3Mo3NiNbZr steel and PCrNi3MoV steel[J]. Heat Treatment of Metals, 2019, 44(10): 29-35. [2] 马 潇, 徐 乐, 王毛球, 等. 25Cr3Mo3NiNbZr钢热变形行为及微观组织研究[J]. 热加工工艺, 2019, 48(19): 23-29. Ma Xiao, Xu Le, Wang Maoqiu, et al. Study on hot deformation behavior and microstructure of 25Cr3Mo3NiNbZr steel[J]. Hot Working Technology, 2019, 48(19): 23-29. [3] 王毛球, 董 瀚, 王 琪, 等. 25Cr3Mo3NiNb二次硬化钢中的碳化物[J]. 钢铁研究学报, 2003, 15(6): 42-46, 50. Wang Maoqiu, Dong Han, Wang Qi, et al. Carbides in secondary hardening steel 25Cr3Mo3NiNb[J]. Journal of Iron and Steel Research, 2003, 15(6): 42-46, 50. [4] Wang H, Zhang J, Zhu J, et al. Structures of M2C carbides and its influence on strengthening in AerMet100 steel at the typical tempering temperature 482 ℃[J]. Vacuum, 2023, 214: 112209. [5] Wang C, Zhang C, Yang Z, et al. Microstructure analysis and yield strength simulation in high Co-Ni secondary hardening steel[J]. Materials Science and Engineering A, 2016, 669: 312-317. [6] Ayer R, Machmeier P M. Transmission electron microscopy examination of hardening and toughening phenomena in Aermet 100[J]. Metallurgical Transactions A, 1993, 24(9): 1943-1955. [7] Tao P, Zhang C, Yang Z G, et al. Evolution and coarsening of carbides in 2.25Cr-1Mo steel weld metal during high temperature tempering[J]. Journal of Iron and Steel Research(International), 2010, 17(5): 74-78. [8] Yu W T, Hao Q T, Wang Q. Phase transformation behavior of Al9(Mn, Ni)2 eutectic phase during heat treatment at 600 ℃ in Al-4Ni-2Mn alloy[J]. Transactions of Nonferrous Metals Society of China, 2018, 28: 1913-1919. [9] Martin J W. Precipitation Hardening[M]. Oxford: Pergamon Press, 1998. [10] 万荣春, 孙 锋, 张澜庭, 等. Mo对耐火钢高温屈服强度的影响[J]. 北京科技大学学报, 2013, 35(3): 325-331. Wan Rongchun, Sun Feng, Zhang Lanting, et al. Effect of Mo on the high-temperature yield strength of fire-resistant steels[J]. Journal of University of Science and Technology Beijing, 2013, 35(3): 325-331. [11] 万荣春, 全春典. Al元素对低Mo耐火钢力学性能的影响[J]. 船舶职业教育, 2023, 11(3): 46-49. Wan Rongchun, Quan Chundian. Effect of Al on mechanical properties of low-Mo fire-resistant steel[J]. Shipbuilding Vocational Education, 2023, 11(3): 46-49. [12] Moon J, Kim S, Lee C H, et al. Strengthening mechanisms of solid solution and precipitation at elevated temperature in fire-resistant steels and the effects of Mo and Nb addition[J]. Journal of Materials Research and Technology, 2021, 15: 5095-5105. [13] Jo H H, Shin C, Moon J, et al. Mechanisms for improving tensile properties at elevated temperature in fire-resistant steel with Mo and Nb[J]. Materials & Design, 2020, 194: 108882. [14] 雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. [15] Miyamoto G, Yokoyama K, Furuhara T. Quantitative analysis of Mo solute drag effect on ferrite and bainite transformations in Fe-0.4C-0.5Mo alloy[J]. Acta Materialia, 2019, 177: 187-197. [16] Wang D, Yang S, Jiang H, et al. Study on the relationship between the refined hierarchical microstructure, yield strength and impact toughness of low-carbon martensitic steel at different quenching temperatures[J]. Materials Science and Engineering A, 2024, 896: 146271. [17] Galindo-Nava E, Rivera-Díaz-del-Castillo P. A model for the microstructure behaviour and strength evolution in lath martensite[J]. Acta Materialia, 2015, 98: 81-93. [18] Morsdorf L, Emelina E, Gault B, et al. Carbon redistribution in quenched and tempered lath martensite[J]. Acta Materialia, 2020, 205: 116521. [19] Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels[J]. Materials Science and Engineering A, 2006, 438(1): 237-240. [20] Galindo-Nava E, Rainforth W M, Rivera-Diaz-Del-Castillo P. Predicting microstructure and strength of maraging steels: Elemental optimization[J]. Acta Materialia, 2016, 117: 270-285. [21] 孙国强, 易健宏, 梁剑雄, 等. 固溶处理对马氏体/铁素体双相不锈钢组织和性能影响[J]. 金属热处理, 2014, 39(8): 31-34. Sun Guoqiang, Yi Jianhong, Liang Jianxiong, et al. Effects of solid solution treatment on microstructure and mechanical properties of martensite/ferrite duplex stainless steel[J]. Heat Treatment of Metals, 2014, 39(8): 31-34. [22] Wang J S, Mulholland M D, Olson G B, et al. Prediction of the yield strength of a secondary-hardening steel[J]. Acta Materialia, 2013, 61(13): 4939-4952. [23] 谢长生. 碳在奥氏体钢中的固溶限与析出强化[J]. 华中理工大学学报, 1990, 18(2): 85-91. Xie Changsheng. The solid solubility limit of carbon in austenitic steel and precipitation strengthening[J]. Journal of Huazhong University of Science and Technology, 1990, 18(2): 85-91. |