[1] 汪杨鑫, 胡春东, 董 瀚. 侵彻战斗部壳体用超高强度钢的研发评述[J]. 钢铁研究学报, 2024, 36(9): 1099-1109. Wang Yangxin, Hu Chundong, Dong Han. A review on research and development of ultrahigh strength steels for penetrating warhead shells[J]. Journal of Iron and Steel Research, 2024, 36(9): 1099-1109. [2] 王 波, 裴红波, 李绪海, 等. G54钢的动高压性能实验研究[J]. 高压物理学报, 2024, 38(6): 29-36. Wang Bo, Pei Hongbo, Li Xuhai, et al. Experimental study on dynamic high pressure properties of G54 steel[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 29-36. [3] 初建鹏, 冯建程, 鞠翔宇, 等. 动载作用下高强度钢的层裂特性研究[J]. 兵器材料科学与工程, 2024, 47(2): 129-135. Chu Jianpeng, Feng Jiancheng, Ju Xiangyu, et al. Study on spalling characteristics of high strength steel under dynamic load[J]. Ordnance Material Science and Engineering, 2024, 47(2): 129-135. [4] 李 硕, 王志军, 孙璐璐, 等. 35CrMnSi钢弹体对钢板侵彻失效行为的试验研究[J]. 兵器材料科学与工程, 2015, 38(1): 18-21. Li Shuo, Wang Zhijun, Sun Lulu, et al. Failure behavior of 35CrMnSi fragment penetrating steel plate[J]. Ordnance Material Science and Engineering, 2015, 38(1): 18-21. [5] 田 杰, 胡时胜. G50钢动态力学性能的实验研究[J]. 工程力学, 2006, 23(6): 107-109, 101. Tian Jie, Hu Shisheng. Research of dynamic mechanical behaviors of G50 steel[J]. Engineering Mechanics, 2006, 23(6): 107-109, 101. [6] 孔庆强, 沈 飞, 邢逸凡, 等. G50钢与G31钢动态力学性能的对比试验研究[J]. 高压物理学报, 2021, 35(1): 70-76. Kong Qingqiang, Shen Fei, Xing Yifan, et al. Comparative experimental study on dynamic mechanical properties of G50 steel and G31 steel[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 70-76. [7] 秦玉荣, 苏 杰, 杨卓越, 等. 三种超高强度钢的动态力学性能[J]. 金属热处理, 2014, 39(12): 83-86. Qin Yurong, Su Jie, Yang Zhuoyue, et al. Dynamic mechanical properties of three kinds of ultrahigh strength steel[J]. Heat Treatment of Metals, 2014, 39(12): 83-86. [8] 许浩翔, 姚文进, 李文彬. 超高强度钢G31的动态力学性能及断裂阈值[J]. 弹道学报, 2020, 32(1): 71-76. Xu Haoxiang, Yao Wenjin, Li Wenbin. Dynamic mechanical properties and fracture threshold of ultra-high strength steel G31[J]. Journal of Ballistics, 2020, 32(1): 71-76. [9] 韩亚威, 杨 璐, 彭 磊, 等. 高温高应变速率下LY315钢材动态力学性能研究[J]. 建筑结构学报, 2023, 44(1): 319-326. Han Yawei, Yang Lu, Peng Lei, et al. Study on dynamic mechanical behavior of LY315 steel at elevated temperature and high strain rate[J]. Journal of Building Structures, 2023, 44(1): 319-326. [10] 于梦晓, 李 佳, 李 卓, 等. 热处理对激光增材制造AerMet100超高强度钢动态力学性能的影响[J]. 中国激光, 2020, 47(11): 62-70. Yu Mengxiao, Li Jia, Li Zhuo, et al. Effect of heat treatment on dynamic mechanical properties of AerMet100 ultra high strength steel fabricated by laser additive manufacturing[J]. Chinese Journal of Lasers, 2020, 47(11): 62-70. [11] Ren J, Xu Y, Zhao X, et al. Dynamic mechanical behaviors and failure thresholds of ultra-high strength low-alloy steel under strain rate 0.001/s to 106/s[J]. Materials Science and Engineering A, 2018, 719: 178-191. [12] Bouaziz O. Revisited storage and dynamic recovery of dislocation density evolution law: Toward a generalized Kocks-Mecking model of strain-hardening[J]. Advanced Engineering Materials, 2012, 14(9): 759-761. [13] Han Q, Yi X. A unified mechanistic model for Hall-Petch and inverse Hall-Petch relations of nanocrystalline metals based on intragranular dislocation storage[J]. Journal of the Mechanics and Physics of Solids, 2021, 154(9): 104530. [14] Li X Y, Zhang Z H, Cheng X W, et al. The evolution of adiabatic shear band in high Co-Ni steel during high strain-rate compression[J]. Materials Science and Engineering A, 2022, 858: 144173. [15] 保 顺, 丰 涵, 宋志刚, 等. 固溶温度对S32750双相不锈钢低周疲劳性能的影响[J]. 钢铁研究学报, 2024, 36(2): 217-225. Bao Shun, Feng Han, Song Zhigang, et al. Effect of solution temperature on microstructure and low cycle fatigue properties of S32750 duplex stainless steel[J]. Journal of Iron and Steel Research, 2024, 36(2): 217-225. [16] 姚倡达. 2200 MPa低涡轴用钢析出相及低周疲劳性能研究[D]. 北京: 钢铁研究总院, 2024. [17] Zheng S, Liu X, Fang L, et al. Strain rate effects of dynamic-driven high dislocation densities in the ultra-high strength Ferrium S53 steel[J]. Materials Today Communications, 2025, 42: 111485. [18] Dannemann K A, Chalivendra V B, Song B. Dynamic behavior of materials[J]. Experimental Mechanics, 2012, 52(2): 117-118. [19] 林 莉, 支旭东, 范 锋, 等. Q235B钢Johnson-Cook模型参数的确定[J]. 振动与冲击, 2014, 33(9): 153-158. Lin Li, Zhi Xudong, Fan Feng, et al. Determination of parameters of Johnson-Cook models of Q235B steel[J]. Journal of Vibration and Shock, 2014, 33(9): 153-158. [20] Miyambo M E, Von Kallon D V, Pandelani T, et al. Review of the development of the split Hopkinson pressure bar[J]. Procedia CIRP, 2023, 119: 800-808. [21] Zhao Yanhua, Sun Jie, Li Jianfeng, et al. A comparative study on Johnson-Cook and modified Johnson-Cook constitutive material model to predict the dynamic behavior laser additive manufacturing FeCr alloy[J]. Journal of Alloys and Compounds, 2017, 723: 179-187. [22] Lu T, Li Y, Zhao H, et al. Dynamic constitutive behavior investigation of a novel low alloy ultra-high strength steel[J]. Materials Research Express, 2021, 8(1): 016508. [23] 张迎晖, 赵鸿金, 康永林. 相变诱导塑性TRIP钢的研究进展[J]. 热加工工艺, 2006, 35(3): 60-65. Zhang Yinghui, Zhao Hongjin, Kang Yonglin. Development of research on TRIP steel[J]. Hot Working Technology, 2006, 35(3): 60-65.[24] 陈跃良, 张柱柱, 卞贵学, 等. 高应变速率条件下38CrMoAl钢的动态力学行为及失效模型[J]. 航空学报, 2020, 41(10): 409-419. Chen Yueliang, Zhang Zhuzhu, Bian Guixue, et al. Dynamic mechanical behavior and failure model of 38CrMoAl steel under high strain rate[J]. Acta Aeronaution et Astronautica Sinica, 2020, 41(10): 409-419. [25] 马 利, 郑津洋, 胡 洋, 等. AISI4340钢的绝热剪切与动态失效准则[J]. 兵工学报, 2010, 31(S1): 79-83. Ma Li, Zheng Jinyang, Hu Yang, et al. Adiabatic shear and dynamic failure criterion for AISI4340 steel[J]. Acta Armamentarii, 2010, 31(S1): 79-83. [26] Bridgman, Percy Williams. Studies in Large Plastic Flow and Fracture: With Special Emphasis on the Effects of Hydrostatic Pressure [M]. Harvard University Press, 1964. [27] Teng X, Wierzbicki T. Evaluation of six fracture models in high velocity perforation[J]. Engineering Fracture Mechanics, 2006, 73(12): 1653-1678. |