[1] Zhu Y, Zhao Y, Fu J, et al. Effect of different heat inputs on impact performance of AH36 steel laser-MAG hybrid welded T-joints[J]. Journal of Materials Engineering and Performance, 2025, 34: 6988-7000. [2] Liu Y, Wang B, Meng Y, et al. Study on the process control of AH36 high strength ship plate[J]. IOP Conference Series: Materials Science and Engineering, 2017, 207(1): 012049. [3] Vukelic G, Vizentin G, Ivosevic S, et al. Analysis of prolonged marine exposure on properties of AH36 steel[J]. Engineering Failure Analysis, 2022, 135: 106132. [4] Popov B N, Lee J W, Djukic M B. Chapter 7-Hydrogen Permeation and Hydrogen-Induced Cracking[M]//Handbook of Environmental Degradation of Materials. 3rd edition. William Andrew Publishing, 2018: 133-162. [5] 张 兵, 毛艺蒙, 姜 涛, 等. 18CrNiMo7-6钢齿轮轴开裂失效分析[J]. 金属热处理, 2024, 49(2): 297-301. Zhang Bing, Mao Yimeng, Jiang Tao, et al. Cracking failure analysis of 18CrNiMo7-6 steel gear shaft[J]. Heat Treatment of Metals, 2024, 49(2): 297-300. [6] Villalobos J C, Del-Pozo A, Campillo B, et al. Microalloyed steels through history until 2018: Review of chemical composition, processing and hydrogen service[J]. Metals, 2018, 8(5): 351. [7] 曹子傲, 戴青鹏, 沈 慧, 等. 溴化银乳剂的合成及其在氢微印中的应用[J]. 安徽工业大学学报(自然科学版), 2021, 38(4): 367-372, 406. Cao Ziao, Dai Qingpeng, Shen Hui, et al. Synthesis of silver bromide emulsion and its application in hydrogen microprint[J]. Journal of Anhui University of Technology (Natural Science), 2021, 38(4): 367-372, 406 [8] Jack T A, Pourazizi R, Ohaeri E, et al. Investigation of the hydrogen induced cracking behaviour of API 5L X65 pipeline steel[J]. International Journal of Hydrogen Energy, 2020, 45(35): 17671-17684. [9] Wang R. Effects of hydrogen on the fracture toughness of a X70 pipeline steel[J]. Corrosion Science, 2009, 51(12): 2803-2810. [10] Wang G, Yan Y, Yang X N, et al. Investigation of hydrogen evolution and enrichment by scanning Kelvin probe force microscopy[J]. Electrochemistry Communications, 2013, 35: 100-103. [11] Chen Z, Duan X, Wei W, et al. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution[J]. Journal of Materials Chemistry A, 2019, 7(25): 14971-15005. [12] Gong P, Nutter J, Rivera-Diaz-Del-Castillo P E J, et al. Hydrogen embrittlement through the formation of low-energy dislocation nanostructures in nanoprecipitation-strengthened steels[J]. Science Advances, 2020, 6(46): eabb6152. [13] Zhang D, Cui C, Li W, et al. Hydrogen diffusion and hydrogen embrittlement failure behavior of AH36 marine steel subjected to high heat input welding[J]. Steel Research International, 2023, 94(3): 2200539. [14] 李金许, 李维国, 王 菲. 一种检测金属中氢分布的简易氢微印方法: CN113092205A[P]. 2021-07-09. [15] 尹文红, 方晓英, 谷万里, 等. 《材料科学基础》晶界部分知识点的扩展性教学[J]. 科技资讯, 2019, 17(4): 179-180. [16] Krom A H M, Bakker A D. Hydrogen trapping models in steel[J]. Metallurgical and Materials Transactions B, 2000, 31: 1475-1482. [17] 陈 翠, 林文洋, 李维娟, 等. EH36钢的氢陷阱及氢脆敏感性[J]. 金属热处理, 2024, 49(3): 147-152. Chen Cui, Lin Wenyang, Li Weijuan, et al. Hydrogen trap and hydrogen embrittlement sensitivity of EH36 steel[J]. Heat Treatment of Metals, 2024, 49(3): 147-152. [18] 刘清华, 唐慧文, 斯庭智. 氢陷阱对钢氢脆敏感性的影响[J]. 材料保护, 2018, 51(11): 127-132, 143. Liu Qinghua, Tang Huiwen, Si Tingzhi. Effects of hydrogen traps on the hydrogen embrittlement susceptibility of steel[J]. Material Protection, 2018, 51 (11): 127-132, 143 [19] 解德刚, 黄龙超, 单智伟. 氢对位错行为影响的原位电镜研究[J]. 电子显微学报, 2023, 42(5): 629-641. Xie Degang, Huang Longchao, Shan Zhiwei. In situ TEM study on the effects of hydrogen on dislocation behavior[J]. Journal of Chinese Electron Microscopy Society, 2023, 42(5): 629-641. [20] Aoki K, Yamawaki H, Sakashita M, et al. Infrared absorption study of the hydrogen-bond symmetrization in ice to 110 GPa[J]. Physical Review B, 1996, 54(22): 15673. [21] Zhu X, Li W, Hsu T Y, et al. Improved resistance to hydrogen embrittlement in a high-strength steel by quenching-partitioning-tempering treatment[J]. Scripta Materialia, 2015, 97: 21-24. [22] Zhou C, Ye B, Song Y, et al. Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22547-22558. [23] Shi H, Guo X, Li J, et al. The gradual disappearance of yield plateau in Zr-Sn-Nb-Fe-Mo alloy by the trace addition of Cr and V[J]. Materials Science and Engineering A, 2019, 760: 407-414. [24] Wang M, Akiyama E, Tsuzaki K. Effect of hydrogen and stress concentration on the notch tensile strength of AISI 4135 steel[J]. Materials Science and Engineering A, 2005, 398(1/2): 37-46. [25] Le K C, Jeong H, Tran T M. Theory of transition from brittle to ductile fracture[J]. Physical Review E, 2023, 107(5): 055006. [26] Schaffner T, Hartmaier A, Kokotin V, et al. Analysis of hydrogen diffusion and trapping in ultra-high strength steel grades[J]. Journal of Alloys and Compounds, 2018, 746: 557-566. [27] Escobar D P, Duprez L, Atrens A, et al. Influence of experimental parameters on thermal desorption spectroscopy measurements during evaluation of hydrogen trapping[J]. Journal of Nuclear Materials, 2014, 450(1/3): 32-41. |