[1] 赵满堂. 合金冷镦钢ML40Cr脱碳层影响因素分析及优化[J]. 工业加热, 2023, 52(7): 31-33. Zhao Mantang. Analysis and optimization of influencing factors on decarbuization layer of alloy cold heading steel ML40Cr[J]. Industrial Heating, 2023, 52(7): 31-33. [2] 李桂英, 尹衍成, 王思亓, 等. 弹簧钢60Si2MnA加热工艺对表面脱碳的影响因素分析[J]. 山东冶金, 2022, 44(3): 27-30. Li Guiying, Yin Yancheng, Wang Siqi, et al. Influence factors analysis of surface decarbonization on heating process for spring steel 60Si2MnA[J]. Shandong Metallurgy, 2022, 44(3): 27-30. [3] 于学森, 沈 奎, 江卓俊, 等. 弹簧钢60Si2MnA表面脱碳规律研究[J]. 热加工工艺, 2017, 46(24): 224-227, 231 Yu Xuesen, Shen Kui, Jiang Zhuojun, et al. Study on surface decarburization law of spring steel 60Si2MnA[J]. Hot Working Technology, 2017, 46(24): 224-227, 231. [4] 肖金福, 刘雅政, 张朝磊, 等. 弹簧钢55SiCrA脱碳规律的研究[J]. 金属热处理, 2010, 35(12): 94-98. Xiao Jinfu, Liu Yazheng, Zhang Chaolei, et al. Surface decarburization of spring steel 55SiCrA[J]. Heat Treatment of Metals, 2010, 35(12): 94-98. [5] 张 可, 曹明亮, 凌孟琪, 等. 60Si2Mn弹簧钢表面脱碳研究[J/OL]. 热加工工艺, 2022-07-13. https://doi.org/10.14158/j.cnki.1001-3814.20210344. Zhang Ke, Cao Mingliang, Ling Mengqi, et al. Study on surface decarburization of 60Si2Mn spring steel [J/OL]. Hot Working Technology, 2022-07-13. https://doi.org/10.14158/j.cnki.1001-3814.20210344. [6] Marston H F, Bolt P H, Leprince G, et al. Challenges in the modelling of scale formation and decarburisation of high carbon, special and general steels[J]. Ironmaking and Steelmaking, 2004, 31(1): 57-65. [7] Choi S, Zwaag S. Prediction of decarburized ferrite depth of hypoeutectoid steel with simultaneous oxidation[J]. ISIJ International, 2012, 52(4): 549-558. [8] 孙晓明, 相 楠, 李 宁. 工具钢S2表面脱碳行为[J]. 金属热处理, 2023, 48(6): 281-286. Sun Xiaoming, Xiang Nan, Li Ning. Surface decarbuization behavior of tool steel S2[J]. Heat Treatment of Metals, 2023, 48(6): 281-286. [9] Li D, Anghelina D, Burzic D, et al. Investigation of decarburization in spring steel production process-part II: Simulation[J]. Steel Research International, 2009, 80(4): 304-310. [10] 胡赓祥, 蔡 珣. 材料科学基础[M]. 上海: 上海交通大学出版社, 2000. [11] 孟庆勇, 门超奇, 宋明明, 等. 高锰高铝钢高温氧化动力学行为的探索研究[J]. 钢铁研究学报, 2024, 36(5): 615-626. Meng Qingyong, Men Chaoqi, Song Mingming, et al. Exploration and study on high temperature oxidation dynamic behavior of high Mn and high Al steels[J]. Journal of Iron an Steel Research, 2024, 36(5): 615-626. [12] 屠兴圹, 左锦中, 赵 赟, 等. 加热和冷却条件对合金工具钢S2表面氧化与脱碳的影响[J]. 金属热处理, 2023, 48(8): 124-131. Tu Xingkuang, Zuo Jinzhong, Zhao Yun, et al. Effect of heating and cooling conditions on surface oxidation an decarbonization of alloy tool steel S2[J]. Heat Treatment of Metals, 2023, 48(8): 124-131. [13] Zambrano P, Guerrero-Mata M P, Artigas A, et al. Modelling oxidation and decarburisation for steel stock reheating[J]. International Heat Treatment and Surface Engineering, 2007, 1(4): 171-175. [14] Nomura M, Morimoto H, Toyama M. Calculation of ferrite decarburizing depth, considering chemical composition of steel and heating condition[J]. ISIJ International, 2000, 40(6): 619-623. [15] 陈继林, 马洪磊, 霍立伟, 等. Cr-Mo-V系冷镦钢表面脱碳演变规律的研究[J]. 钢铁钒钛, 2022, 43(6): 153-160. Chen Jilin, Ma Honglei, Huo Liwei, et al. Study on the evolution law of surface decarburization of Cr-Mo-V cold heading steel[J]. Iron Steel Vanadium Titanium, 2022, 43(6): 153-160. [16] Liu Y B, Zhang W, Tong Q, et al. Effects of Si and Cr on complete decarburization behavior of high carbon steels in atmosphere of 2vol.%O2[J]. Journal of Iron and Steel Research International, 2016, 23(12): 1316-1322. |