金属热处理 ›› 2025, Vol. 50 ›› Issue (7): 125-133.DOI: 10.13251/j.issn.0254-6051.2025.07.018

• 材料研究 • 上一篇    下一篇

冷镦钢ML40Cr的脱碳行为及氧化对脱碳的影响

王宁涛, 李战卫, 张宇, 于学森   

  1. 江苏省(沙钢)钢铁研究院, 江苏 张家港 215625
  • 收稿日期:2025-02-17 修回日期:2025-05-14 出版日期:2025-07-25 发布日期:2025-07-28
  • 通讯作者: 张宇,正高级工程师,博士,E-mail:zhangyu-iris@shasteel.com
  • 作者简介:王宁涛(1987—),男,高级工程师,硕士,主要研究方向为线材产品开发,E-mail:ddwangtao87@126.com。

Decarburisation behavior of cold heading steel ML40Cr and effect of oxidation on decarburisation

Wang Ningtao, Li Zhanwei, Zhang Yu, Yu Xuesen   

  1. Institute of Research of Iron & Steel, Shagang, Jiangsu Province, Zhangjiagang Jiangsu 215625, China
  • Received:2025-02-17 Revised:2025-05-14 Online:2025-07-25 Published:2025-07-28

摘要: 通过电阻炉加热试验,研究了不同加热温度(700~1150 ℃)和加热时间(10~60 min)下ML40Cr钢的脱碳和氧化增重,并对轧后冷却过程的脱碳行为进行了模拟。结果表明,随着加热温度和时间的增加,ML40Cr钢的氧化增重呈增加趋势,900~1050 ℃的氧化增速最快。加热温度低于725 ℃时,ML40Cr钢无明显脱碳,在750~1150 ℃加热时,随着加热时间和温度的增加,ML40Cr钢总脱碳层整体呈增加趋势,>1000 ℃时脱碳层深度急剧增加,1150 ℃时脱碳最严重。利用氧化增重计算出烧损层和氧化铁皮厚度,用Li、Choi和理论脱碳-烧损模型对总脱碳层深度进行理论计算,对比发现氧化对于总脱碳的主要影响是氧化烧损消耗了脱碳层,而氧化铁皮对脱碳的影响较小。全脱碳层只在750~800 ℃加热时出现,825 ℃以上不再出现明显的全脱碳。表面碳含量影响全脱碳的产生,表面碳含量高,降低全脱碳甚至不出现全脱碳。模拟轧后冷却发现,随着冷却速率降低,ML40Cr钢全脱碳和总脱碳层深度均呈增加趋势;冷速<3 ℃/s时,冷却过程脱碳层深度增加明显。

关键词: 冷镦钢, 脱碳, 加热, 氧化, 冷却速率

Abstract: Decarburization and oxidation mass gain of ML40Cr steel under different heating temperatures (700-1150 ℃) and heating time (10-60 min) were studied through resistance furnace heating tests, and the decarburization behavior during the post-rolling cooling process was simulated. The results show that with the increase of heating temperature and time, the oxidation mass gain of the ML40Cr steel tends to increase, and the oxidation rate is the fastest between 900-1050 ℃. When the heating temperature is lower than 725 ℃, there is no obvious decarburization in the ML40Cr steel. When heated between 750-1150 ℃, the total decarburized layer of the steel generally increases with the increase of time and temperature. The depth of the decarburized layer increases sharply above 1000 ℃, and decarburization is most severe at 1150 ℃. The thickness of the burn-off layer and oxide scale are calculated using the oxidation mass gain, and the total decarburisation depth is theoretically calculated by models of the Li, Choi and theoretical decarburization-burning loss. Comparative analysis reveal that oxidation primarily affects total decarburisation by consuming the decarburisation depth through oxidation burn-off, whereas the influence of the oxide scale on decarburisation is minimal. The full decarburized depth only appears when heated between 750-800 ℃, with no significant ferrite decarburizing observed above 825 ℃. Surface carbon content influences the formation of ferrite decarburizing. The surface carbon content affects the occurrence of full decarburization. A high surface carbon content reduces or even prevents the occurrence of full decarburization. Simulation of post-rolling cooling demonstrates that as the cooling rate decreases, both full and total decarburisation of the steel increase. When the cooling rate is below 3 ℃/s, the depth of the decarburized layer increases significantly during the cooling process.

Key words: cold heading steel, decarburisation, heating, oxidation, cooling rate

中图分类号: