[1] Williams W J, Wachs D M, Okuniewski M A, et al. Assessment of swelling and constituent redistribution in uranium-zirconium fuel using phenomena identification and ranking tables (PIRT)[J]. Annals of Nuclear Energy, 2020, 136: 107016. [2] Matthews C, Unal C, Galloway J, et al. Fuel-cladding chemical interaction in U-Pu-Zr metallic fuels: A critical review[J]. Nuclear Technology, 2017, 198(3): 231-259. [3] Sohn Y H, Dayananda M A, Hofman G L, et al. Analysis of constituent redistribution in the γ (bcc) U-Pu-Zr alloys under gradients of temperature and concentrations[J]. Journal of Nuclear Materials, 2000, 279(2/3): 317-329. [4] Hofman G L, Hayes S L, Petri M C. Temperature gradient driven constituent redistribution in U-Zr alloys[J]. Journal of Nuclear Materials, 1996, 227(3): 277-286. [5] Qian Z, Xie X, Fu Y, et al. Investigation of swelling behaviors of U-10Zr metallic fuel in the low temperature regime via a cavitational void swelling model[J]. Journal of Nuclear Materials, 2022, 564: 153665. [6] Pahl R G, Porter D L, Lahm C E, et al. Experimental studies of U-Pu-Zr fast reactor fuel pins in the experimental breeder reactor-ll[J]. Metallurgical Transactions A, 1990, 21: 1863-1870. [7] Hofman G L, Pahl R G, Lahm C E, et al. Swelling behavior of U-Pu-Zr fuel[J]. Metallurgical Transactions A, 1990, 21: 517-528. [8] Galloway J, Unal C, Carlson N, et al. Modeling constituent redistribution in U-Pu-Zr metallic fuel using the advanced fuel performance code BISON[J]. Nuclear Engineering and Design, 2015, 286: 1-17. [9] Harp J M, Capriotti L, Chichester H J M, et al. Postirradiation examination on metallic fuel in the AFC-2 irradiation test series[J]. Journal of Nuclear Materials, 2018, 509: 454-464. [10] Thomas J, Bengoa A F, Nori S T, et al. The application of synchrotron micro-computed tomography to characterize the three-dimensional microstructure in irradiated nuclear fuel[J]. Journal of nuclear materials, 2020, 537: 152161. [11] Janney D E, Hayes S L. Experimentally known properties of U-10Zr alloys: A critical review[J]. Nuclear Technology, 2018, 203(2): 109-128. [12] Carmack W J, Chichester H M, Porter D L, et al. Metallography and fuel cladding chemical interaction in fast flux test facility irradiated metallic U-10Zr MFF-3 and MFF-5 fuel pins[J]. Journal of Nuclear Materials, 2016, 473: 167-177. [13] Harp J M, Porter D L, Miller B D, et al. Scanning electron microscopy examination of a fast flux test facility irradiated U-10Zr fuel cross section clad with HT-9[J]. Journal of Nuclear Materials, 2017, 494: 227-239. [14] Sheldon R I, Peterson D E. The U-Zr (uranium-zirconium) system[J]. Bulletin of Alloy Phase Diagrams, 1989, 10(2): 165-171. [15] Akabori M, Itoh A, Ogawa T, et al. Stability and structure of the δ phase of the U-Zr alloys[J]. Journal of Nuclear Materials, 1992, 188: 249-254. [16] Lawson A C, Olsen C E, Richardson J W, et al. Structure of β-uranium[J]. Structural Science, 1988, 44(2): 89-96. [17] Akabori M, Ogawa T, Itoh A, et al. The lattice stability and structure of delta-UZr2 at elevated temperatures[J]. Journal of Physics: Condensed Matter, 1995, 7(43): 8249. [18] Huber J G, Ansari P H. The superconductivity of BCC U-Zr alloys[J]. Physica B+C, 1985, 135(1/3): 441-444. [19] Basak C, Prasad G J, Kamath H S, et al. An evaluation of the properties of as-cast U-rich U-Zr alloys[J]. Journal of Alloys and Compounds, 2009, 480(2): 857-862. [20] Mukherjee S, Kaity S, Saify M T, et al. Evidence of zirconium nano-agglomeration in as-cast dilute U-Zr alloys[J]. Journal of Nuclear Materials, 2014, 452(1/3): 1-5. [21] Hills B F, Butcher B R, Howlett B W, et al. The effect of cooling rate on the decomposition of the γ-phase in uranium-zirconium alloys[J]. Journal of Nuclear Materials, 1965, 16(1): 25-38. [22] Bauer A A, Beatty G H, Rough F A, et al. The constitution of zirconium-uranium alloys containing oxygen or nitrogen[R]. Columbus: Battelle Memorial Institute, 1957. [23] Rough F A, Bauer A A. Constitution of uranium and thorium alloys[R]. Columbus: Battelle Memorial Institute, 1957. [24] Williams W J, Okuniewski M A, Vogel S C, et al. In situ neutron diffraction study of crystallographic evolution and thermal expansion coefficients in U-22.5at.%Zr during annealing[J]. The Journal of The Minerals, Metals and Materials Society, 2020, 72: 2042-2050. [25] Kim K H, Oh S J, Kim S K, et al. Microstructural characterization of U-Zr alloy fuel slugs for sodium-cooled fast reactor[J]. Surface and Interface Analysis, 2012, 44(11/12): 1515-1518. [26] McKeown J T, Irukuvarghula S, Ahn S, et al. Coexistence of the α and δ phases in an as-cast uranium-rich U-Zr alloy[J]. Journal of Nuclear Materials, 2013, 436(1/3): 100-104. [27] Irukuvarghula S, Ahn S, McDeavitt S M. Decomposition of the γ phase in as-cast and quenched U-Zr alloys[J]. Journal of Nuclear Materials, 2016, 473: 206-217. [28] Moore A P, Deo C, Baskes M I, et al. Atomistic mechanisms of morphological evolution and segregation in U-Zr alloys[J]. Acta Materialia, 2016, 115: 178-188. [29] Rai A K, Subramanian R, Hajra R N, et al. Calorimetric study of phase stability and phase transformation in U-xZr (x= 2, 5, 10 wt pct) alloys[J]. Metallurgical and Materials Transactions A, 2015, 46: 4986-5001. [30] Zhang Y, Wang X, Zeng G, et al. Microstructural investigation of as-cast uranium rich U-Zr alloys[J]. Journal of Nuclear Materials, 2016, 471: 59-64. [31] Lehmann M J, Hills R F. Nomenclature proposee pour les phases des alliages d'uranium[J]. Journal of Nuclear Materials, 1960, 2(3): 261-268. [32] Williams W J, Yao T, Sudderth L, et al. Phase identification and morphology in rolled and annealed U-22.5at.%Zr foils[J]. Materials Research Society Advances, 2021, 6(47): 1037-1042. [33] Zegler S T. The Uranium-rich End of the Uranium-zirconium System[M]. Lemont: Argonne National Laboratory, 1962. [34] Basak C B, Keswani R, Prasad G J, et al. Phase transformations in U-2wt%Zr alloy[J]. Journal of Alloys and Compounds, 2009, 471(1/2): 544-552. [35] Di Lemma F G, Salvato D, Capriotti L, et al. Microstructure and phase evolution in the U-10Zr fuel investigated by in situ TEM heating experiments[J]. Journal of Nuclear Materials, 2023, 583: 154475. [36] Hua Z, Yao T, Khanolkar A, et al. Intragranular thermal transport in U-50Zr[J]. Journal of Nuclear Materials, 2020, 534: 152145. [37] 陈 超, 白志勇. U-10wt%Zr合金熔炼工艺研究[C]//中国核学会2023年学术年会论文集. 2023. |