[1] 张福成. 辙叉钢及其热加工技术[M]. 北京: 机械工业出版社, 2011. [2] Peng G, H K I, John N, et al. The influence of hydrogen on plasticity in pure iron-theory and experiment[J]. Scientific Reports, 2020, 10(1): 10209. [3] 常开地, 顾家琳, 方鸿生, 等. 新型1500 MPa级高强钢的氢脆敏感性研究[J]. 金属热处理, 2002, 27(3): 8-11. Chang Kaidi, Gu Jialin, Fang Hongsheng, et al. Study on susceptibility to hydrogen embrittlement for novel 1500 MPa level high strength steel[J]. Heat Treatment of Metals, 2002, 27(3): 8-11. [4] 薛曙冰, 张大征, 李维娟, 等. 显微组织对海洋立管用钢氢扩散行为的影响[J]. 辽宁科技大学学报, 2022, 45(1): 31-37. Xue Shubing, Zhang Dazheng, Li Weijuan, et al. Effects of microstructure on hydrogen diffusion behavior in marine riser steel[J]. Journal of University of Science and Technology Liaoning, 2022, 45(1): 31-37. [5] 曲炎淼, 黄 峰, 刘 静, 等. 显微组织对X80钢氢致裂纹敏感性和氢捕获效率的影响[J]. 材料研究学报, 2010, 24(5): 508-512. Qu Yanmiao, Huang Feng, Liu Jing. et al. Influence of microstructure on hydrogen induced cracks susceptibility and hydrogen trapping efficiency for X80 pipeline steel[J]. Chinese Journal of Materials Research, 2010, 24(5): 508-512. [6] 陈 健, 汪 兵, 胡 亮, 等. 高强度管线钢微观组织对氢致裂纹的影响[J]. 钢铁, 2015, 50(4): 48-52. Chen Jian, Wang Bing, Hu Liang, et al. Effects of hydrogen induced cracking on the microstructure of high strength pipeline steel[J]. Iron and Steel, 2015, 50(4): 48-52. [7] Zhu X, Zhang K, Li W, et al. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels[J]. Materials Science and Engineering A, 2016, 658. [8] 雍 辉, 季燕全, 胡季帆, 等. Mg-Y-Ni储氢合金吸放氢动力学性能的研究[J]. 稀有金属, 2022, 46(8): 1021-1030. Yong Hui, Ji Yanquan, Hu Jifan, et al. Absorption and desorption hydrogen kinetic of Mg-Y-Ni based hydrogen storage alloy[J]. Chinese Journal of Rare Metals, 2022, 46 (8): 1021-1030. [9] Cavaliere P, Sadeghi B, Perrone A, et al. Modelling of hydrogen diffusion leading to embrittlement in austenitic stainless steels[J]. International Journal of Pressure Vessels and Piping, 2024, 208: 105120. [10] Wang Z, Liu J, Huang F, et al. Hydrogen diffusion and its effect on hydrogen embrittlement in DP steels with different martensite content[J]. Frontiers in Materials, 2020, 7: 620000. [11] De A K, Murdock D C, Mataya M C, et al. Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction[J]. Scripta Materialia, 2004, 50(12): 1445-1449. [12] 郑春雷, 闫志刚. 一种透射电镜样品厚度的测量方法: 中国, 201911287503.0[P]. 2020-04-10. [13] Hase K, Garcia-Mateo C, Bhadeshia H K D H. Bimodal size-distribution of bainite plates[J]. Materials Science and Engineering A, 2005, 438: 145-148. [14] Zajac S, Schwinn V, Tacke K H. Characterisation and quantification of complex bainitic microstructures in high and ultra-high strength linepipe steels[J]. Materials Science Forum, 2005, 500-501: 387-394. [15] Landheer H, Offerman S E, Petrov R H, et al. The role of crystal misorientations during solid-state nucleation of ferrite in austenite[J]. Acta Materialia, 2009, 57(5): 1486-1496. [16] 褚武扬. 氢脆和应力腐蚀[M]. 北京: 科学出版社, 2013. [17] Hempel C, Mandel M, Kruger L, et al. Influence of microstructure on hydrogen trapping and diffusion in a pre-deformed TRIP steel[J]. International Journal of Hydrogen Energy, 2023, 48(12): 4906-4920. [18] 陈连生, 张雷雨, 杨子旋, 等. 微合金元素Cu及等温温度对低碳硅锰钢氢扩散行为的影响[J]. 表面技术,2020, 49(8): 45-54. Chen Liansheng, Zhang Leiyu, Yang Zixuan, et al. Effect of micro-alloying element Cu and isothermal temperature on hydrogen diffusion behavior of low carbon Si-Mn steel[J]. Surface Technology, 2020, 49(8): 45-54. [19] Schaffner T, Hartmaier A, Kokotin V, et al. Analysis of hydrogen diffusion and trapping in ultra-high strength steel grades[J]. Journal of Alloys and Compounds, 2018, 746: 557-566. [20] 刘清华, 唐慧文, 斯庭智. 氢陷阱对钢氢脆敏感性的影响[J]. 材料保护, 2018, 51(11): 127-132. Liu Qinghua, Tang Huiwen, Si Tingzhi. Effects of hydrogen traps on the hydrogen embrittlement susceptibility of steel[J]. Material Protection, 2018, 51(11): 127-132. [21] 钟 彬, 陈义庆, 高 鹏, 等. 微观组织和氢陷阱对抗硫管氢扩散系数的影响[J]. 钢铁研究学报, 2020, 32(1): 81-87. Zhong Bin, Chen Yiqing, Gao Peng, et al. Effects of microstructure and hydrogen trap on hydrogen diffusion coefficient of sulfur-resistant tube[J]. Journal of Iron and Steel Research, 2020, 32(1): 81-87. |