金属热处理 ›› 2025, Vol. 50 ›› Issue (11): 82-91.DOI: 10.13251/j.issn.0254-6051.2025.11.013
陈正宗1,2, 刘正东1,2, 陈千1, 蔡文河3, 姜海峰4, 刘峰5, 何西扣1,2
收稿日期:2025-06-18
修回日期:2025-09-17
发布日期:2025-12-16
作者简介:陈正宗(1986—),男,正高级工程师,博士,主要研究方向为电站用耐热材料研发及工程应用,E-mail:chenzhengzong@nercast.com
基金资助:Chen Zhengzong1,2, Liu Zhengdong1,2, Chen Qian1, Cai Wenhe3, Jiang Haifeng4, Liu Feng5, He Xikou1,2
Received:2025-06-18
Revised:2025-09-17
Published:2025-12-16
摘要: 马氏体耐热钢P92支撑了我国600 ℃超超临界电站批量建设,新一代煤电要求深度调峰灵活发电,P92钢管道焊接接头IV型蠕变裂纹是影响机组安全运行的瓶颈。本文综述了国内外P92钢焊接接头IV型裂纹形成机理研究现状,主要包括接头“弱化区”在蠕变过程的组织退化、应力状态和裂纹扩展的温度应力范围对IV型裂纹产生的影响,提出抑制P92钢焊接接头IV型蠕变裂纹产生倾向的建议,但IV型蠕变裂纹是P92钢焊接接头的固有特性,新形势下工程上若想从根本上解决可选用更高等级、IV型蠕变裂纹敏感性低的耐热钢。
中图分类号:
陈正宗, 刘正东, 陈千, 蔡文河, 姜海峰, 刘峰, 何西扣. 马氏体耐热钢P92焊接接头IV型蠕变裂纹形成机理研究现状[J]. 金属热处理, 2025, 50(11): 82-91.
Chen Zhengzong, Liu Zhengdong, Chen Qian, Cai Wenhe, Jiang Haifeng, Liu Feng, He Xikou. Research status on formation mechanism of type IV creep cracks in welded joints of martensitic heat-resistant steel P92[J]. Heat Treatment of Metals, 2025, 50(11): 82-91.
| [1] 赵洪伟, 刘 利. P92和G115在630 ℃超超临界电站机组管材选用分析[J]. 电力勘测设计, 2022(3): 6-11. Zhao Hongwei, Liu Li. Analysis of P92 and G115 in pipe material selecting for 630 ℃ ultra-supercritical power plant unit[J]. Electric Power Survey and Design, 2022(3): 6-11. [2] 邵天佑, 李法众, 韩克刚. 华能玉环电厂4×1000 MW超超临界机组锅炉用钢[J]. 热力发电, 2006(12): 78-79. Shao Tianyou, Li Fazhong, Han Kegang. Presentation of boiler used steels for 4×1000 MW ultra-supercritical units in Huaneng Yuhuan Power Plant[J]. Thermal Power Generation, 2006(12): 78-79. [3] 李文彬. SA335-P92钢焊接工艺研究[D]. 保定: 华北电力大学(河北), 2009. [4] 赵勇桃. 超超临界锅炉用P92钢的组织性能及应用[M]. 北京: 冶金工业出版社, 2015. [5] Abson D J, Rothwell J S. Review of type IV cracking of weldments in 9-12%Cr creep strength enhanced ferritic steels[J]. International Materials Reviews, 2013, 58(8): 437-473. [6] Zerbst U, Ainsworth R A, Beier H T, et al. Review on fracture and crack propagation in weldments-A fracture mechanics perspective[J]. Engineering Fracture Mechanics, 2014, 132: 200-276. [7] 刘剑秋, 刘新宝, 朱 麟, 等. 9Cr-1Mo耐热钢蠕变过程中可动位错演化行为表征[J]. 西北大学学报(自然科学版), 2018, 48(1): 66-70. Liu Jianqiu, Liu Xinbao, Zhu Lin, et al. Characterization of mobile dislocation evolution in 9Cr-1Mo heat-resistant steel during elevated temperature creep[J]. Journal of Northwest University(Natural Science Edition), 2018, 48(1): 66-70. [8] Jin X, Zhu B, Li Y, et al. Effect of the microstructure evolution on the high-temperature strength of P92 heat-resistant steel for different service times[J]. International Journal of Pressure Vessels and Piping, 2020, 186: 104131. [9] 郭苗苗. 基于EBSD技术的P91钢蠕变行为表征[D]. 西安: 西北大学, 2018. [10] Panait C G, Zielińska-Lipiec A, Koziel T, et al. Evolution of dislocation density, size of subgrains and MX-type precipitates in a P91 steel during creep and during thermal ageing at 600 ℃ for more than 100 000 h[J]. Materials Science and Engineering A, 2010, 527(16/17): 4062-4069. [11] 谭永生. 9Cr-1Mo型铁素体耐热钢组织退化的机理研究[D]. 西安: 西安工程大学, 2016. [12] 张红军, 刘树涛, 范长信. 国产P91钢在蠕变过程中微观组织和性能的变化[J]. 中国电力, 2007(7): 12-16. Zhang Hongjun, Liu Shutao, Fan Changxin. Variation in microstructure and performance during the creep of domestic P91 steel[J]. Electric Power, 2007(7): 12-16. [13] 陈 宇. 长期服役T/P91耐热钢的微观组织结构与失效机理的研究[D]. 沈阳: 东北大学, 2008. [14] 朱丽慧, 赵钦新, 顾海澄, 等. 10Cr9Mo1VNbN耐热钢强化机理研究[J]. 机械工程材料, 1999, 23(1): 6-8, 26. Zhu Lihui, Zhao Qinxin, Gu Haicheng, et al. Investigation on the strengthening mechanisms of 10Cr9Mo1VNbN heat-resistant steel[J]. Materials for Mechanical Engineering, 1999, 23(1): 6-8, 26. [15] Hald J, Korcakova L. Precipitate stability in creep resistant ferritic steels-Experimental investigations and modelling[J]. ISIJ International, 2003, 43(3): 420-427. [16] Hald J. Microstructure and long-term creep properties of 9-12%Cr steels[J]. International Journal of Pressure Vessels and Piping, 2008, 85(1-2): 30-37. [17] Sawada K, Kushima H, Kimura K. Z-phase formation during creep and aging in 9-12%Cr heat resistant steels[J]. ISIJ International, 2006, 46(5): 769-775. [18] Danielsen H K, Hald J. A thermodynamic model of the Z-phase Cr(V, Nb)N[J]. Calphad, 2007, 31(4): 505-514. [19] Hättestrand M, Andrén H. Evaluation of particle size distributions of precipitates in a 9% chromium steel using energy filtered transmission electron microscopy[J]. Micron, 2001, 32(8): 789-797. [20] 彭志方, 蔡黎胜, 彭芳芳, 等. P92钢625 ℃持久性能分段特征与各段中M23C6及Laves相相参数的定量变化研究[J]. 金属学报, 2010, 46(4): 429-434. Peng Zhifang, Cai Lisheng, Peng Fangfang, et al. Study on the multi-segment feature of 625 ℃ creep-rupture property and the quantitative change of phase parameters of M23C6 and Laves phases in each segment of P92 steel[J]. Acta Metallurgica Sinica, 2010, 46(4): 429-434. [21] Peng Z F, Liu S, Yang C, et al. The effect of phase parameter variation on hardness of P91 components after service exposures at 530-550 ℃[J]. Acta Materialia, 2018, 143: 141-155. [22] Homolová V, Janovec J, Záhumensky P, et al. Influence of thermal-deformation history on evolution of secondary phases in P91 steel[J]. Materials Science and Engineering A, 2003, 349(1/2): 306-312. [23] Xu X, West G D, Siefert J A, et al. The influence of thermal cycles on the microstructure of grade 92 steel[J]. Metallurgical and Materials Transactions A, 2017, 48(11): 5396-5414. [24] Jones W B, Hills C R, Polonis D H. Microstructural evolution of modified 9Cr-1Mo steel[J]. Metallurgical Transactions A, 1991, 22(5): 1049-1058. [25] Smith A, Asadikiya M, Yang M, et al. An Investigation of creep resistance in grade 91 steel through computational thermodynamics[J]. Engineering, 2020, 6(6): 644-652. [26] Albert S K, Matsui M, Watanabe T, et al. Variation in the type IV cracking behaviour of a high Cr steel weld with post weld heat treatment[J]. International Journal of Pressure Vessels and Piping, 2003, 80(6): 405-413. [27] Milovič L. Microstructural investigations of the simulated heat affected zone of the creep resistant steel P91[J]. Materials at High Temperatures, 2010, 27(3): 233-242. [28] Issler S, Klenk A, Shibli A A, et al. Weld repair of ferritic welded materials for high temperature application[J]. International Materials Reviews, 2004, 49(5): 299-324. [29] Alves R D S, All A S D S. Comparison of effects of thermal aging, irradiation, and thermal annealing on the propensity for temper embrittlement on an RPV submerged-arc weld HAZ[J]. Igarss, 2014(1): 1-5. [30] 黄 鑫, 齐红宇, 李少林, 等. 焊接接头裂纹扩展行为研究评述与展望[J]. 工程力学, 2023-10-27. DOI: 10.6052/j.issn.1000-4750.2023.06.0412. Huang Xin, Qi Hongyu, Li Shaolin, et al. Review and prospect of research on crack propagation behavior of welded joints[J]. Engineering Mechanics, 2023-10-27. DOI: 10.6052/j.issn.1000-4750.2023.06.0412. [31] 侯志强. P92钢焊接接头易出现的问题和焊接工艺要求[J]. 机电信息, 2011(30): 116-117. [32] Toyoda M, Minami F, Ruggieri C, et al. Fracture toughness measurement for fracture performance evaluation of weldments-significance of shallow notch CTOD test[J]. Welding International, 1994, 8(4): 279-285. [33] Shüller H J, Haigh L, Woitscheck A. Cracking in the weld region of shaped components in hot lines[J]. Der Machinenschaden, 1974, 47: 1-13. [34] Li D, Shinozaki K, Kuroki H, et al. Analysis of factors affecting type IV cracking in welded joints of high chromium ferritic heat resistant steels[J]. Science and Technology of Welding and Joining, 2003, 8(4): 296-302. [35] Tabuchi M, Watanabe T, Kubo K, et al. High temperature strength. microstructures and creep strength of welded joints for W strengthened high Cr ferritic steel[J]. Journal of the Society of Materials Science Japan, 2001, 50(2): 116-121. [36] Abe F. Creep deformation behavior and alloy design philosophy of creep-resistant tempered martensitic 9Cr steel[C]//Advances in Materials Technology for Power Plants. ASM International, 2010: 620-639. [37] 孙晓翔. G115马氏体耐热钢焊接热影响区微观组织及Ⅳ型蠕变裂纹敏感性研究[D]. 武汉: 华中科技大学, 2021. [38] Albert S K, Matsui M, Hongo H, et al. Creep rupture properties of HAZs of a high Cr ferritic steel simulated by a weld simulator[J]. International Journal of Pressure Vessels and Piping, 2004, 81(3): 221-234. [39] Kimura K, Sawada K, Toda Y, et al. Creep strength assessment of high chromium ferritic creep resistant steels[J]. Materials Science Forum, 2007, 539-543: 3112-3117. [40] Wang X, Pan Q G, Liu Z J, et al. Creep rupture behaviour of P92 steel weldment[J]. Engineering Failure Analysis, 2011, 18(1): 186-191. [41] Maruyama K, Sawada K, Koike J I. Strengthening mechanisms of creep resistant tempered martensitic steel[J]. ISIJ International, 2001, 41(6): 641-653. [42] Zhang Q, Zhang J, Zhao P, et al. Microstructure of 10%Cr martensitic heat-resistant steel welded joints and type IV cracking behavior during creep rupture at 650 ℃[J]. Materials Science and Engineering A, 2015, 638: 30-37. [43] Parker J. Factors affecting type IV creep damage in grade 91 steel welds[J]. Materials Science and Engineering A, 2013, 578: 430-437. [44] Withers P J, Bhadeshia H K D H. Residual stress Part II - Nature and origins[J]. Materials Science and Technology, 2001, 17(4): 366-375. [45] Abe F, Noda T, Araki H, et al. Alloy composition selection for improving strength and toughness of reduced activation 9Cr-W steels[J]. Journal of Nuclear Materials, 1991, 179: 663-666. [46] Ennis P J, Zielinska-Lipiec A, Wachter O, et al. Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant[J]. Acta Materialia, 1997, 45(12): 4901-4907. [47] Wang Y, Li L, Kannan R. Transition from type IV to type I cracking in heat-treated grade 91 steel weldments[J]. Materials Science and Engineering A, 2018, 714: 1-13. [48] Zhao L, Jing H, Xu L, et al. Numerical investigation of factors affecting creep damage accumulation in ASME P92 steel welded joint[J]. Materials in Engineering, 2012, 34: 566-575. [49] 肖旻堃. 管线钢管承压时焊接接头的应力分布研究[J]. 焊管, 2016, 39(1): 12-16, 20. Xiao Minkun. Research on the stress distribution of welded joint of line pipe under internal pressure[J]. Welded Pipe and Tube, 2016, 39(1): 12-16, 20. [50] Smith D J, Walker N S, Kimmins S T. Type IV creep cavity accumulation and failure in steel welds[J]. The International Journal of Pressure Vessels and Piping, 2003, 80(9): 617-627. [51] Francis J A, Mazur W, Bhadeshia H K D H. Type IV cracking in ferritic power plant steels[J]. Materials Science and Technology, 2006, 22(12): 1387-1395. [52] Yu T, Yatomi M, Shi H J. Numerical investigation on the creep damage induced by void growth in heat affected zone of weldments[J]. International Journal of Pressure Vessels and Piping, 2009, 86(9): 578-584. [53] Zhang W, Wang X, Wang Y, et al. Type IV failure in weldment of creep resistant ferritic alloys: I. Micromechanical origin of creep strain localization in the heat affected zone[J]. Journal of the Mechanics and Physics of Solids, 2020, 134: 103774. [54] Abe F. Strengthening mechanisms in steel for creep and creep rupture[J]. Creep-Resistant Steels, 2008, 13(4): 279-304. [55] Watanabe T, Tabuchi M, Yamazaki M, et al. Creep damage evaluation of 9Cr-1Mo-V-Nb steel welded joints showing type IV fracture[J]. International Journal of Pressure Vessels and Piping, 2006, 83(1): 63-71. [56] Li Dejun, Shinozaki Kenji. Stress-strain analysis of creep deterioration in welded joint of high Cr ferritic heat resistant steels[C]//International Conference on Advanced Structural Steels(ICASS 2004), Shanghai. 2004: 861-865. [57] Yaguchi M, Ogata T, Sakai T. Creep strength of high chromium steels welded parts under multiaxial stress conditions[J]. International Journal of Pressure Vessels and Piping, 2010, 87(6): 357-364. [58] Sakthivel T S G D. Creep deformation and rupture behavior of P92 steel weld joint fabricated by NG-TIG welding process[J]. Journal of Materials Engineering and Performance, 2019, 28(7): 4364-4378. [59] Shinozaki K, Kuroki H. Stress-strain analysis of creep deterioration in heat affected weld zone in high Cr ferritic heat resistant steel[J]. Metal Science Journal, 2003, 19(9): 1253-1260. [60] Shinozaki K, Li D J, Kuroki H, et al. Analysis of degradation of creep strength in heat-affected zone of weldment of high Cr heat-resisting steels based on void observation[J]. ISIJ International, 2002, 42(12): 1578-1584. [61] Albert S K, Tabuchi M, Hongo H, et al. Effect of welding process and groove angle on type IV cracking behaviour of weld joints of a ferritic steel[J]. Science and Technology of Welding and Joining, 2005, 10(2): 149-157. [62] Nivas R, Singh P K, Das G, et al. A comparative study on microstructure and mechanical properties near interface for dissimilar materials during conventional V-groove and narrow gap welding[J]. Journal of Manufacturing Processes, 2017, 25: 274-283. [63] Giri A, Mahapatra M M, Sharma K, et al. A study on the effect of weld groove designs on residual stresses in SS 304LN thick multipass pipe welds[J]. International Journal of Steel Structures, 2017, 17(1): 65-75. [64] Kumar A, Pandey S M, Pandey C. Dissimilar weldments of ferritic/martensitic grade P92 steel and Inconel 617 alloy: Role of groove geometry on mechanical properties and residual stresses[J]. Archives of Civil and Mechanical Engineering, 2022, 23(1): 54. [65] Raj B, Saroja S, Laha K, et al. Methods to overcome embrittlement problem in 9Cr-1Mo ferritic steel and its weldment[J]. Journal of Materials Science, 2009, 44(9): 2239-2246. [66] Van den Bosch J, Coen G, Van Renterghem W, et al. Compatibility of ferritic-martensitic steel T91 welds with liquid lead-bismuth eutectic: Comparison between TIG and EB welds[J]. Journal of Nuclear Materials, 2010, 396(1): 57-64. [67] Tanner D W J, Sun W, Hyde T H. The effect of weld fusion zone angle in a cross-weld specimen under creep[C]//12th International Conference on Creep and Fracture of Engineering Materials and Structures(CREEP 2012). 2012. [68] Francis J A, Cantin G M D, Mazur W, et al. Effects of weld preheat temperature and heat input on type IV failure[J]. Science and Technology of Welding and Joining, 2009, 14(5): 436-442. [69] Dak G, Pandey C. Study on effect of weld groove geometry on mechanical behavior and residual stresses variation in dissimilar welds of P92/SS304L steel for USC boilers[J]. Archives of Civil and Mechanical Engineering, 2022, 22(3): 140. [70] Masuyama F. Effect of specimen size and shape on creep rupture behavior of creep strength enhanced ferritic steel welds[J]. International Journal of Pressure Vessels and Piping, 2010, 87(11): 617-623. [71] Middleton C J, Brear J M, Munson R, et al. An assessment of the risk of type IV cracking in welds to header, pipework and turbine components constructed from the advanced ferritic 9% and 12% chromium steels[C]//Conference on Advances in Materials Technology for Fossil Power Plants. 2001: 69-78. [72] Kern T U, Staubli M, Mayer K H, et al. The European effort in development of new high temperature rotor materials up to 650 ℃-COST 522[C]//Liege Conference on Materials for Advanced Power Engineering, 2002. [73] Wang Y, Kannan R, Li L. Insight into type IV cracking in grade 91 steel weldments[J]. Materials and Design, 2020, 190: 108570. [74] Shin K, Lee J, Han J, et al. Transition of creep damage region in dissimilar welds between Inconel 740H Ni-based superalloy and P92 ferritic/martensitic steel[J]. Materials Characterization, 2018, 139: 144-152. [75] Xue W, Pan Q, Ren Y, et al. Microstructure and type IV cracking behavior of HAZ in P92 steel weldment[J]. Materials Science and Engineering A, 2012, 552: 493-501. [76] Shinozaki K, Li D, Kuroki H, et al. Observation of type IV cracking in welded joints of high chromium ferritic heat resistant steels[J]. Science and Technology of Welding and Joining, 2003, 8(4): 289-295. [77] 赵 雷. P92钢焊接接头的蠕变损伤机理研究[D]. 天津: 天津大学, 2009. [78] 安俊超. P92钢焊接接头热影响区蠕变裂纹扩展速率研究[D]. 天津: 天津大学, 2008. [79] 王 学, 潘乾刚, 刘 洪, 等. 超超临界机组用P92钢焊接细晶区高温蠕变行为研究[J]. 中国电机工程学报, 2010, 30(2): 104-108. Wang Xue, Pan Qiangang, Liu Hong, et al. High-temperature creep behaviour of fine grained heat-affected zone in P92 weldment used in ultra supercritical inits[J]. Proceedings of the CSEE, 2010, 30(2): 104-108. [80] 刘正东, 陈正宗, 包汉生, 等. 新一代马氏体耐热钢G115研发及工程化[M]. 北京: 冶金工业出版社, 2020. [81] 齐向前. 焊后回火温度对G115钢熔敷金属组织及室温力学性能的影响[J]. 金属热处理, 2021, 46(10): 199-203. Qi Xiangqian. Effect of post-weld tempering temperature on microstructure and room temperature mechanical properties of G115 steel deposited metal[J]. Heat Treatment of Metals, 2021, 46(10): 199-203. [82] 田力男, 张丰收, 李俊峰, 等. G115钢管埋弧自动焊焊缝冲击性能不足的原因分析及热处理修复措施[J]. 金属热处理, 2023, 48(4): 293-297. Tian Linan, Zhang Fengshou, Li Junfeng, et al. Cause analysis of insufficient impact toughness and heat treatment repair process of G115 steel pipe SAW weld[J]. Heat Treatment of Metals, 2023, 48(4): 293-297. [83] Abe F. High performance creep resistant steels for 21st century power plants[C]//Proceedings of the 1st Conference on Super High Strength Steels. 2005: 2-5. |
| [1] | 黄亮, 马辉, 王晓东, 包喜荣. 基于TMCP的P92钢管的在线形变热处理[J]. 金属热处理, 2025, 50(9): 132-139. |
| [2] | 许小龙, 唐辉, 鲁欣武, 唐小勇, 赵征志. 退火温度对Q420B钢焊接接头组织与性能的影响[J]. 金属热处理, 2025, 50(6): 210-216. |
| [3] | 彭金波, 叶受智, 全琼蕊. TC2钛合金板焊接接头残余应力分布及焊后热处理应力松弛效应模拟[J]. 金属热处理, 2025, 50(5): 300-308. |
| [4] | 赵勇桃, 王瑞, 王玉峰, 任慧平. P92钢渗铝工艺的优化[J]. 金属热处理, 2025, 50(4): 259-263. |
| [5] | 马佳林, 李勇, 方一鸣, 王万里, 占先强, 刘俊建, 王家庆, 汤文明. 奥氏体化后冷速对P92钢显微组织及热稳定性的影响[J]. 金属热处理, 2025, 50(10): 30-38. |
| [6] | 王程明, 白丽娟, 宋月, 刘丽君, 谷秀锐, 李惠敏. 海洋平台用EH36钢的SHCCT曲线测定与分析[J]. 金属热处理, 2025, 50(1): 58-62. |
| [7] | 赵勇桃, 吴银虎, 鲁海涛, 王瑞, 雷丙旺. 不同等温温度下P92钢的组织演变[J]. 金属热处理, 2024, 49(9): 47-50. |
| [8] | 张勇, 李如杨, 马青山, 胡效东. 热处理对09MnNiDR低温钢焊接接头组织及力学性能的影响[J]. 金属热处理, 2024, 49(8): 136-142. |
| [9] | 张正华, 李霄, 王艳松, 肖世俊. 中间回火对15Cr1Mo1V钢补焊热影响区组织和力学性能的影响[J]. 金属热处理, 2024, 49(5): 140-145. |
| [10] | 王艺橦, 侯华兴, 张弛, 潘栋. 高能电脉冲处理对海洋结构用钢焊接接头组织及性能的影响[J]. 金属热处理, 2024, 49(4): 131-137. |
| [11] | 李林平, 刘艳荣, 杨茂鸿, 杜晋峰, 张峥. 焊后热处理对Sanicro25/G115异种钢接头组织及力学性能的影响[J]. 金属热处理, 2024, 49(11): 178-184. |
| [12] | 李勇, 马佳林, 王万里, 方一鸣, 占先强, 刘俊建, 汤文明. 服役后P92钢管不同硬度区的显微结构及拉伸性能[J]. 金属热处理, 2024, 49(10): 140-147. |
| [13] | 张明鲲, 杨敏, 王宇, 赵祥, 井德强. 热处理对高速列车用7005铝合金焊接接头应力腐蚀敏感性的影响[J]. 金属热处理, 2023, 48(8): 166-171. |
| [14] | 周永东, 龚兰芳, 刘梓屹. 焊后时效处理对7020铝合金应力腐蚀倾向影响[J]. 金属热处理, 2023, 48(6): 80-84. |
| [15] | 张捷, 钟远, 文作伟, 石伟栋, 郭通, 张小文, 罗良飞. 厚壁P92钢管道焊接接头中频感应热处理的应用实践[J]. 金属热处理, 2023, 48(3): 91-95. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 中国机械总院集团北京机电研究所有限公司 《金属热处理》编辑部
北京海淀区学清路18号 北京机电研究所有限公司内 邮政编码:100083 电话:010-62935465 82415083 E-mail:jsrcl@vip.sina.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn