[1] 梁雅楠. 煤矿地面供电系统技术改造研究[J]. 矿业装备, 2021(4): 22-23. Liang Yanan. Research on the technological upgrading of surface power supply systems for coal mines[J]. Minging Equipment, 2021(4): 22-23. [2] 付明翔, 韩为民, 默增禄. 煤矿采空区500 kV输电线路设计的探讨[J]. 电力建设, 2004, 25(6): 30-32. Fu Mingxiang, Han Weimin, Mo Zenglu. Inquisition into design of 500 kV transmission lines routed in emptied area of coal mine[J]. Electric Power Construction, 2004, 25(6): 30-32. [3] 高 静. 一种新型节能母线槽: CN201610758640.8[P]. 2024-07-03. [4] 蒋欣哲, 王安标. 新型机械外壳用镁合金的压铸工艺优化[J]. 热加工工艺, 2020, 49(13): 80-84. Jiang Xinzhe, Wang Anbiao. Die casting process optimization of new magnesium alloy for mechanical shell[J]. Hot Working Technology, 2020, 49(13): 80-84. [5] 吴玉娟, 丁文江, 彭立明, 等. 高性能稀土镁合金的研究进展[J]. 中国材料进展, 2011, 30(2): 1-9. Wu Yujuan, Ding Wenjiang, Peng Liming, et al. Research progress of advanced magnesium rare-earth alloys[J]. Materials China, 2011, 30(2): 1-9. [6] 赵志远. 铸造稀土镁合金在我国航空工业中的应用[J]. 材料工程, 1993(7): 8-10. Zhao Zhiyuan. The application of RE-containing magnesium casting alloys in aviation industry in China[J]. Journal of Materials Engineering, 1993(7): 8-10. [7] 闫志飞, 田光元, 苏 辉, 等. 高性能镁合金的研究进展[J]. 铸造技术, 2023, 44(2): 101-113. Yan Zhifei, Tian Guangyuan, Su Hui, et al. Research progress of high-performance magnesium alloy[J]. Foundry Technology, 2023, 44(2): 101-113. [8] 郑明毅, 徐 超, 乔晓光, 等. 超高强韧Mg-Gd-Y-Zn-Zr变形镁合金研究进展[J]. 中国材料进展, 2020, 39(1): 19-30. Zheng Mingyi, Xu Chao, Qiao Xiaoguang, et al. Research progress on ultra-high strength and toughness Mg-Gd-Y-Zn-Zr wrought magnesium alloys[J]. Materials China, 2020, 39(1): 19-30. [9] 黄 镇. Mg-Gd-Y-Zr合金组织与力学性能研究[D]. 沈阳: 东北大学, 2008. [10] Wang F, Feng M, Jiang Y, et al. Cyclic shear deformation and fatigue of extruded Mg-Gd-Y magnesium alloy[J]. Journal of Materials Science and Technology, 2020, 39(4): 74-81. [11] Guo Y, Li J, Li J, et al. Mg-Gd-Y system phase diagram calculation and experimental clarification[J]. Journal of Alloys and Compounds, 2008, 450(1/2): 446-451. [12] Xiao H, Tang B, Liu C, et al. Dynamic precipitation in a Mg-Gd-Y-Zr alloy during hot compression[J]. Materials Science and Engineering: A, 2015, 645: 241-247. [13] Homma T, Kunito N, Kamado S. Fabrication of extraordinary high-strength magnesium alloy by hot extrusion[J]. Scripta Materialia, 2009, 61(6): 644-647. [14] Chi Y, Zheng M, Xu C, et al. Effect of ageing treatment on the microstructure, texture and mechanical properties of extruded Mg-8.2Gd-3.8Y-1Zn-0.4Zr(wt%) alloy[J]. Materials Science and Engineering: A, 2013, 565: 112-117. [15] Xu C, Zheng M, Xu S, et al. Ultra high-strength Mg-Gd-Y-Zn-Zr alloy sheets processed by large-strain hot rolling and ageing[J]. Materials Science and Engineering A, 2012, 547: 93-98. [16] Hagihara K, Li Z, Yamasaki M, et al. Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered(LPSO)-phase alloys[J]. Acta Materialia, 2019, 163: 226-239. [17] Kim J K, Ko W S, Sandlöbes S, et al. The role of metastable LPSO building block clusters in phase transformations of an Mg-Y-Zn alloy[J]. Acta Materialia, 2016, 112: 171-183. [18] Hansen N. Hall-Petch relation and boundary strengthening[J]. Scripta Materialia, 2004, 51(8): 801-806. [19] Han B, Dunand D. Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids[J]. Materials Science and Engineering A, 2000, 277(1/2): 297-304. [20] 黎文献. 镁及镁合金[M]. 长沙: 中南大学出版社, 2005. [21] Bohlen J, Nürnberg M R, Senn J W, et al. The texture and anisotropy of magnesium-zinc-rare earth alloy sheets[J]. Acta Materialia, 2007, 55(6): 2101-2112. [22] 丁文江, 靳 丽, 吴文祥, 等. 变形镁合金中的织构及其优化设计[J]. 中国有色金属学报, 2011, 21(10): 2371-2381. Ding Wenjiang, Jin Li, Wu Wenxiang, et al. Texture and texture optimization of wrought Mg alloy[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2371-2381. |