[1] 唐远寿, 司 宇, 徐正萌, 等. 超高强度钢在汽车轻量化中的应用及研究进展[J]. 金属热处理, 2023, 48(10): 247254. Tang Yuanshou, Si Yu, Xu Zhengmeng, et al. Application and research progress of ultra-high strength steel in automotive lightweight[J]. Heat Treatment of Metals, 2023, 48(10): 247-254. [2] Hu B, Luo H. A novel two-step intercritical annealing process to improve mechanical properties of medium Mn steel[J]. Acta Materialia, 2019, 176: 250-263. [3] Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: A review[J]. Materials Science and Engineering A, 2020, 795: 140023. [4] 宋仁伯, 霍巍丰, 周乃鹏, 等. Fe-Mn-Al-C系中锰钢的研究现状与发展前景[J]. 工程科学学报, 2020, 42(7): 814-828. Song Renbo, Huo Weifeng, Zhou Naipeng, et al. Research progress and prospect of Fe-Mn-Al-C medium Mn steels[J]. Chinese Journal of Engineering, 2020, 42(7): 814-828. [5] 任勇强, 尚成嘉, 张宏伟, 等. 0.23C-1.9Mn-1.6Si钢中的残余奥氏体对韧塑性的影响[J]. 材料研究学报, 2014, 28(4): 274-280. Ren Yongqiang, Shang Chengjia, Zhang Hongwei, et al. Effect of retained austenite on toughness and plasticity of 0.23C-1.9Mn-1.6Si steel[J]. Chinese Journal of Materials Research, 2014, 28(4): 274-280. [6] Yu W, Qian L, Wei C, et al. Enhancing the ductility and yield strength of 2.7Mn steel via two-step partitioning heat treatment[J]. International Journal of Plasticity, 2024, 183: 104148. [7] Joshua K, Md S H, Bonvalet M R, et al. Deconstructing the retained austenite stability: A comparative study of two-phase and bulk microstructures[J]. Metallurgical and Materials Transactions A, 2024, 55(2): 466-476. [8] Wang J, Zwaag S V D. Stabilization mechanisms of retained austenite in transformation-induced plasticity steel[J]. Metallurgical and Materials Transactions A, 2001, 32(6): 1527-1539. [9] Jimenez-Melero E, Dijk N H V, Zhao L, et al. Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels[J]. Acta Materialia, 2007, 55(20): 6713-6723. [10] 张 坤, 武会宾, 唐 荻, 等. 9Ni钢中逆转变奥氏体的稳定性[J]. 工程科学学报, 2012, 34(6): 651-656. Zhang Kun, Wu Huibin, Tang Di, et al. Stability of reversed austenite in 9Ni steel[J]. Chinese Journal of Engineering, 2012, 34(6): 651-656. [11] Shen Y F, Qiu L N, Sun X, et al. Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels[J]. Materials Science and Engineering A, 2015, 636: 551-564. [12] 胡宝佳, 郑沁园, 路 轶, 等. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200. Hu Baojia, Zheng Qinyuan, Lu Yi, et al. Recrystallization controlling in a cold-rolled medium Mn steel and its effect on mechanical properties[J]. Acta Metallurgica Sinica, 2024, 60(2): 189-200. [13] Zhang Y, Ding H, Zhu H, et al. Superior strength-ductility combination achieved via double heterogeneities of microstructure and composition: An example of medium manganese steel[J]. Materials Science and Engineering A, 2022, 834: 142443. [14] Chen T, Cui E, Shen Y, et al. Superior combination of strength and ductility in Fe-10Mn-0.6C steel trigged by austenite reversion transformation[J]. Materials Science and Engineering A, 2024, 901: 146579. [15] 田亚强, 田 耕, 郑小平, 等. 淬火配分贝氏体钢不同位置残留奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340. Tian Yaqiang, Tian Geng, Zheng Xiaoping, et al. C and Mn elements characterization and stability of retained austenite in different locations of quenching and partitioning bainite steels[J]. Acta Metallurgica Sinica, 2019, 55(3): 332-340. [16] 张 超, 熊志平, 杨德振, 等. 非均质Mn分布对淬火-配分钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(1): 69-79. Zhang Chao, Xiong Zhiping, Yang Dezhen, et al. Effect of Mn heterogeneous distribution on microstructures and mechanical properties of quenching and partitioning steels[J]. Acta Metallurgica Sinica, 2024, 60(1): 69-79. [17] 邵成伟, 惠卫军, 张永健, 等. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201. Shao Chengwei, Hui Weijun, Zhang Yongjian, et al. Microstructure and mechanical properties of a novel cold rolled medium-Mn steel with superior strength and ductility[J]. Acta Metallurgica Sinica, 2019, 55(2): 191-201. [18] 黄 龙, 邓想涛, 刘 佳, 等. 0.12C-3.0Mn低碳中锰钢中残留奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324. Huang Long, Deng Xiangtao, Liu Jia, et al. Relationship between retained austenite stability and cryogenic impact toughness in 0.12C-3.0Mn low carbon medium manganese steel[J]. Acta Metallurgica Sinica, 2017, 53(3): 316-324. [19] Lee S, Kang S, Nam J, et al. Effect of tempering on the microstructure and tensile properties of a martensitic medium-Mn lightweight steel[J]. Metallurgical and Materials Transactions A, 2019, 50: 2655-2664. [20] Song C, Zhang Z, Wu W, et al. Effect of Si on the deformation behavior of retained austenite and annealed martensite in medium Mn steels[J]. Materials Science and Engineering A, 2024, 899: 146451. [21] Chihab K, Estrin Y, Kubin L P. The kinetics of the Portevin-Le Chatelier bands in an Al-5at%Mg alloy[J]. Scripta Metallurgica, 1987, 21: 203-208. [22] Zambrano A O. Stacking fault energy maps of Fe-Mn-Al-C-Si steels: Effect of temperature, grain size, and variations in compositions[J]. Journal of Engineering Materials and Technology, 2016, 138(4): 041010. [23] Liu L, He B, Cheng G, et al. Optimum properties of quenching and partitioning steels achieved by balancing fraction and stability of retained austenite[J]. Scripta Materialia, 2018, 150: 1-6. [24] 马江南, 杨才福, 王瑞珍. 微合金钢回温变形时的组织转变和铁素体动态再结晶行为[J]. 材料工程, 2015, 43(11): 24-31. Ma Jiangnan, Yang Caifu, Wang Ruizhen. Microstructure transformation and ferrite dynamic recrystallization behavior of microalloyed steel during temperature-reversion deforming[J]. Journal of Materials Engineering, 2015, 43(11): 24-31. [25] Wang S, Chen W J, Zhao Z Z, et al. Effect of microstructure evolution on Lüders strain and tensile properties in an intercritical annealing medium-Mn steel[J]. Journal of Iron and Steel Research International, 2021, 28: 762-772. |