[1]陈 君, 李全安, 张 清, 等. AISI 316不锈钢腐蚀磨损交互作用的研究[J]. 中国腐蚀与防护学报, 2014, 34(5): 433-438. Chen Jun, Li Quanan, Zhang Qing, et al. Sliding wear-corrosion performance of AISI 316 stainless steel against alumina in artificial seawater[J]. Journal of Chinese Society for Corrosion and Protection, 2014, 34(5): 433-438. [2]Li C X, Bell T. Corrosion properties of plasma nitrided AISI 410 martensitic stainless steel in 3.5% NaCl and 1% HCl aqueous solutions[J]. Corrosion Science, 2005, 48(8): 2036-2049. [3]葛利玲, 卢正欣, 井晓天, 等. 0Cr18Ni9不锈钢表面纳米化组织及其热稳定性对低温渗氮行为的影响[J]. 金属学报, 2009, 45(5): 566-572. Ge Liling, Lu Zhengxin, Jing Xiaotian, et al. Effect of surface nanocrystallization and thermal stability of 0Cr19Ni9 stainless steel on low temperature nitriding behavior[J]. Acta Metallurgica Sinica, 2009, 45(5): 566-572. [4]罗 伟, 王 均, 闫 静, 等. 304奥氏体不锈钢低温盐浴渗氮处理[J]. 材料热处理学报, 2012, 33(10): 107-110. Luo Wei, Wang Jun, Yan Jing, et al. Low temperature salt bath nitriding of 304 austenitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(10): 107-110. [5]周 军, 杨 闯, 马亚芹, 等. 真空渗氮时间对TC4钛合金渗氮层组织与性能的影响[J]. 金属热处理, 2018, 43(9): 80-84. Zhou Jun, Yang Chuang, Ma Yaqin, et al. Influence of vacuum nitriding time on microstructure and properties of nitriding layer of TC4 titanium alloy[J]. Heat Treatment of Metals, 2018, 43(9): 80-84. [6]韩永珍, 李 俏, 徐跃明, 等. 真空低压渗碳技术研究进展[J]. 金属热处理, 2018, 43(10): 253-261. Han Yongzhen, Li Qiao, Xu Yueming, et al. Research progress of vacuum low pressure carburizing technology[J]. Heat Treatment of Metals, 2018, 43(10): 253-261. [7]Martinavicˇius A, Abrasonis G, Scheinost A C, et al. Nitrogen interstitial diffusion induced decomposition in AISI 304L austenitic stainless steel[J]. Acta Materialia, 2012, 60(10): 131-136. [8]Thomas C, Somers M A J. On the crystallographic structure of S-phase[J]. Scripta Materialia, 2003, 50(1): 24-28. [9]Michal G M, Ernst F, Kahn H, et al. Carbon supersaturation due to paraequilibrium carburization: Stainless steels with greatly improved mechanical properties[J]. Acta Materialia, 2005, 54(6): 159-164. [10]Mahboubi F, Abdolvahabi K. The effect of temperature on plasma nitriding behaviour of DIN 1.6959 low alloy steel[J]. Vacuum, 2006, 81(3): 239-243. [11]卢世静, 孙 斐, 缪小吉, 等. 离子渗氮和固溶复合处理制备深层含氮奥氏体不锈钢[J]. 表面技术, 2018, 47(10): 180-185. Lu Shijing, Sun Fei, Miao Xiaoji, et al. Preparation for deep nitriding austenitic stainless steel by complex treatment of plasma nitriding and solid solution[J]. Surface Technology, 2018, 47(10): 180-185. [12]李广宇, 雷明凯. AISI 316奥氏体不锈钢等离子体源渗氮及其耐磨抗蚀性能[J]. 材料保护, 2017, 50(2): 10-14. Li Guangyu, Lei Mingkai. Wear and corrosion resistance of AISI 316 austenitic stainless steel after plasma source nitriding treatment[J]. Materials Protection, 2017, 50(2): 10-14. [13]洪 流, 杨 闯, 詹永红. 1Cr18Ni9Ti奥氏体不锈钢的真空固溶渗氮处理[J]. 铸造技术, 2016, 37(12): 2563-2565. Hong Liu, Yang Chuang, Zhan Yonghong. Vacuum solid solution nitriding treatment of 1Cr18Ni9Ti austenitic stainless steel[J]. Foundry Technology, 2016, 37(12): 2563-2565. [14]禹润缜, 刘胜新, 王朋旭, 等. Fe-Cr-C系硬面合金及其硬质相的研究进展[J]. 材料导报, 2018, 32(21): 3780-3788. Yu Runzhen, Liu Shengxin, Wang Pengxu, et al. A brief survey on the Fe-Cr-C hard facing alloys and its hard phases[J]. Materials Review, 2018, 32(21): 3780-3788. |