[1]陈继平, 康永林, 郝英敏, 等. Ti和Ti+Nb处理的超低碳烘烤硬化钢连续退火研究[J]. 金属热处理, 2009, 34(9): 52-58. Chen Jiping, Kang Yonglin, Hao Yingmin, et al. Continuous annealing of Ti and Ti+Nb bearing ultra-low carbon bake hardening steels [J]. Heat Treatment of Metals, 2009, 34(9): 52-58. [2]冯月雪, 康永林, 刘光明, 等. ULC-BH钢连续退火过程织构的演变规律研究[J]. 热加工工艺, 2011, 40(16): 157-160. Feng Yuexue, Kang Yonglin, Liu Guangming, et al. Research on texture evolution law during continuous annealing for ULC-BH steel [J]. Hot Working Technology, 2011, 40(16): 157-160. [3]卜凡征, 吴庆美, 郭 强, 等. 180 MPa级超低碳烘烤硬化汽车钢板烘烤硬化稳定性研究[J]. 汽车工艺与材料, 2022(12): 37-41. Bu Fanzheng, Wu Qingmei, Guo Qiang, et al. Research on bake hardening stability of 180 MPa grade ultra-low carbon bake hardened automotive steel sheet [J]. Automobile Technology & Material, 2022(12): 37-41. [4]吴庆美, 郭 强, 卜凡征, 等. H220BD超低碳烘烤硬化钢耐时效性能[J]. 金属功能材料, 2023, 30(2): 61-65. Wu Qingmei, Guo Qiang, Bu Fanzheng, et al. Aging resistance performance of H220BD ultra-low carbon baking hardening steel [J]. Metallic Functional Materials, 2023, 30(2): 61-65. [5]李 研, 李铁军, 滕华湘, 等. 热镀锌汽车板波纹度的控制技术[J]. 金属热处理, 2019, 44(4): 207-210. Li Yan, Li Tiejun, Teng Huaxiang, et al. Control technology of waviness on galvanized auto sheet [J]. Heat Treatment of Metals, 2019, 44(4): 207-210. [6]崔 岩, 王瑞珍, 雍岐龙. 超低碳烘烤硬化钢晶粒尺寸的变化规律[J]. 金属热处理, 2011, 36(1): 37-41. Cui Yan, Wang Ruizhen, Yong Qilong. Grain size evolution of ultra low carbon bake hardening steel [J]. Heat Treatment of Metals, 2011, 36(1): 37-41. [7]崔 岩, 王瑞珍, 魏 星, 等. 连续退火工艺对超低碳烘烤硬化钢烘烤硬化性能的影响[J]. 钢铁, 2010, 45(9): 86-90. Cui Yan, Wang Ruizhen, Wei Xing, et al. Effect of continuous annealing on bake hardening property of ultra-low carbon steel [J]. Iron and Steel, 2010, 45(9): 86-90. [8]吴庆美, 缪心雷, 郑连辉, 等. 工业化生产中冷却速率对热镀锌DP600的组织及性能影响[J]. 金属功能材料, 2022, 29(2): 67-70. Wu Qingmei, Miao Xinlei, Zheng Lianhui, et al. Effect of cooling rate on micro structure and properties of DP600 in the industrial production [J]. Metallic Function Materials, 2022, 29(2): 67-70. [9]佟皑男, 缪心雷, 吴庆美, 等. 一种连续热镀锌烘烤硬化钢板提升耐时效性能的生产方法: CN202010573401.1[P]. 2020-06-22. [10]张理扬, 张利祥. 烘烤硬化钢热镀锌镀层450 ℃合金化退火模拟[J]. 钢铁研究学报, 2012, 24(9): 33-39. Zhang Liyang, Zhang Lixiang. Alloying and annealing simulation of the galvannealing of hot-dip galvanized bake-hardenable steel at 450 ℃[J]. Journal of Iron and Steel Research, 2012, 24(9): 33-39. [11]赵 虎, 康永林, 刘光明, 等. 超低碳烘烤硬化钢板的织构[J]. 钢铁研究学报, 2007, 19(11): 47-50, 59. Zhao Hu, Kang Yonglin, Liu Guangming, et al. Texture in extra-low carbon bake hardened steel [J]. Journal of Iron and Steel Research, 2007, 19(11): 47-50, 59. [12]张广建, 孙蓟泉, 郭衍振, 等. 热轧薄板钢轧制周期内表面粗糙度变化规律的研究[J]. 山东冶金, 2008, 30(5): 42-45. Zhang Guangjian, Sun Jiquan, Guo Yanzhen, et al. Study on the change rule of the surface roughness of hot rolling strip in a rolling cycle [J]. Shandong Metallurgy, 2008, 30(5): 42-45. [13]罗五四. 汽车用薄钢板表面波纹度测量技术研究[J]. 汽车科技, 2011(4): 77-82. Luo Wusi. Research on the automobile sheet steel surface waviness measurement technique [J]. Auto Sci-Tech, 2011(4): 77-82. [14]王 华, 史 文, 何燕霖, 等. Mn和P在超低碳烘烤硬化钢中的分布形态及对其拉伸行为的影响研究[J]. 金属学报, 2011, 47(3): 263-268. Wang Hua, Shi Wen, He Yanlin, et al. Study of Mn and P solute distributions and their effect on the tensile behavior in ultra low carbon bake hardening steels [J]. Acta Metallurgica Sinica, 2011, 47(3): 263-268. [15]赵 虎, 康永林, 江海涛, 等. 终轧温度对超低碳BH钢板组织和性能的影响[J]. 汽车工艺与材料, 2006(11): 6-8. Zhao Hu, Kang Yonglin, Jiang Haitao, et al. Effect of hot rolling finish temperature on microstructures and properties of extra low carbon bake hardening steel [J]. Automobile Technology & Material, 2006(11): 6-8. [16]吴庆美, 郭 强, 卜凡征, 等. 一种控制表面波纹度的热镀锌IF钢板生产方法: CN202011238030.8 [P]. 2020-11-09. [17]郭 强, 吴庆美, 郑连辉, 等. 高成形性热镀锌DH600钢板的电阻点焊工艺性能研究[J]. 汽车工艺与材料, 2023(3): 61-67. Guo Qiang, Wu Qingmei, Zheng Lianhui, et al. Study on the resistance spot welding process and properties of hot dip galvanized DH600 steel plate with high formability [J]. Automobile Technology & Material, 2023(3): 61-67. |