[1] 董 磊, 陈 曦, 马启磊, 等. 超超临界双切圆燃烧锅炉多煤种掺烧下水冷壁结渣特性的数值模拟[J]. 动力工程学报, 2024, 44(2): 241-250. Dong Lei, Chen Xi, Ma Qilei, et al. Numerical simulation of slagging characteristics of ultra supercritical double-tangential circular fired boiler water wall under the combustion of multiple coals blending[J]. Journal of Chinese Society of Power Engineering, 2024, 44(2): 241-250. [2] Mohamed O, Khalil A, Wang J. Modeling and control of supercriticaland ultra-supercritical power plants: A review[J]. Energies, 2020, 13(11): 2935. [3] Choi H, Choi Y, Moon U C, et al. Supplementary control of conventional coordinated control for 1000 MW ultra-supercritical thermal power plant using one-step ahead control[J]. Energies, 2023, 16(17): 6197. [4] 余 波, 何浩民, 徐铭洲, 等. 超超临界600 MW机组凝结水泵系统优化与应用[J]. 发电设备, 2024, 38(2): 125-128. Yu Bo, He Haomin, Xu Mingzhou, et al. Optimization and application of condensate pump system in an ultra supercritical 600 MW unit[J]. Power Equipment, 2024, 38(2): 125-128. [5] 马 宁, 叶 斌, 白玉忠. 某超超临界辅机单列机组30%负荷深度调峰探索与实践[J]. 能源科技, 2024, 22(1): 51-55. Ma Ning, Ye Bin, Bai Yuzhong. Supercritical single-train auxiliary unit exploration and practice of deep peak shaving at 30% load by an ultra[J]. Energy Science and Technology, 2024, 22(1): 51-55. [6] 王江滨. 超(超)临界锅炉Super304 h不锈钢氧化特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. [7] 张志强, 安冬冬, 曲同良, 等. 大型火电机组过热器爆管原因分析[J]. 山东电力技术, 2021, 48(10): 75-80. Zhang Zhiqiang, An Dongdong, Qu Tongliang, et al. Causes and countermeasures of superheater tube explosion in large thermal power units[J]. Shandong Electric Power, 2021, 48(10): 75-80. [8] Balashadehi M M, Nourpour P, Aghdam A S R, et al. The formation, microstructure and hot corrosion behaviour of slurry aluminide coating modified by Ni/Ni-Co electrodeposited layer on Ni-base superalloy[J]. Surface and Coatings Technology, 2020, 402: 126283. [9] 吴志海, 孟国辉, 刘梅军, 等. 元素改性铝化物涂层研究进展[J]. 材料保护, 2024, 57(1): 96-110. Wu Zhihai, Meng Guohui, Liu Meijun, et al. Research progress of element modified aluminide coatings[J]. Materials Protection, 2024, 57(1): 96-110. [10] Dey P P, Sahu S, Banerjee P S, et al. A review on metallurgical features of hot-dip aluminized steel[J]. Engineering Research Express, 2023, 5(1): 012002. [11] Agüero A, González V, Gutiérrez M, et al. Comparison between field and laboratory steam oxidation testing on aluminide coatings on P92[J]. Materials and Corrosion, 2011, 62(6): 561-568. [12] 杨久峰. K403镍基高温合金料浆渗铝涂层形成过程及抗高温氧化性能研究[D]. 南昌: 南昌航空大学, 2022. [13] 侯 磊, 宋新英, 刘 瑶, 等. 某型发动机二级涡轮导向器叶片料浆渗铝腐蚀分析及工艺方法改进[J]. 航空维修与工程, 2018(10): 76-78. Hou Lei, Song Xinying, Liu Yao, et al. Analysis on the slurry aluminizing corrosion and process improvement of second-stage turbine guide-vane[J]. Aviation Maintenance & Engineering, 2018(10): 76-78. [14] 由向群, 于春兰. 用耐火粘土做保护层的料浆渗铝工艺研究[J]. 热加工工艺, 1995(1): 28-30. You Xiangqun, Yu Chunlan. Study on slurry aluminizing process with refractory clay protective case[J]. Hot Working Technology, 1995(1): 28-30. [15] Lu Jintao, Dang Yingying, Huang Jinyang, et al. Preparation and characterization of slurry aluminide coating on Super304 h boiler tube in combination with heat-treatment process[J]. Surface and Coatings Technology, 2019, 370: 97-105. [16] Agüero A, Gutiérrez M, Muelas R, et al. Overview of steam oxidation behaviour of Al protective oxide precursor coatings on P92[J]. Surface Engineering, 2018, 34(1): 30-39. [17] 董 猛, 谢逍原, 朱阳存, 等. G115和T92钢表面FeAl渗层制备及其抗高温水蒸气氧化性能[J]. 材料热处理学报, 2021, 42(5): 135-142. Dong Meng, Xie Xiaoyuan, Zhu Yangcun, et al. Preparation of FeAl penetration layer on G115 and T92 steel surface and its oxidation resistance to high temperature steam[J]. Transactions of Materials and Heat Treatment, 2021, 42(5): 135-142. [18] 杨忠林. 硅对抑制涂层“氧化缺口”破坏的作用[J]. 材料工程, 1994(3): 34-37. Yang Zhonglin. The effect of silicon to inhibit “oxidation notch” in coating[J]. Journal of Materials Engineering, 1994(3): 34-37. [19] 屈文娟. 1Cr11MoNiW1VNbN不锈钢Al-Si涂层组织结构及抗高温氧化性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2011. [20] 龚兵兵, 刘光明, 安春香, 等. T92钢700 ℃下料浆渗铝机理研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 587-593. Gong Bingbing, Liu Guangming, An Chunxiang, et al. Growth mechanism of aluminide coating on T92 steel prepared by slurry aluminizing at 700 ℃[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(3): 587-593. [21] 安春香, 龚兵兵, 刘光明. T92钢料浆低温渗铝层生长方式研究[J]. 热力透平, 2022, 51(4): 278-284. An Chunxiang, Gong Bingbing, Liu Guangming. Study on growth mode of low temperature aluminized layer of T92 steel slurry[J]. Thermal Turbine, 2022, 51(4): 278-284. [22] Agüero, Alina, Spiradek K, et al. Microstructural Evolution of slurry Fe aluminide coatings during high temperature steam oxidation[J]. Materials Science, 2008, 595-598: 251-259. [23] 朱阳存. 9Cr-3W-3Co钢低温渗铝工艺及其抗水蒸汽氧化性能研究[D]. 南昌: 南昌航空大学, 2019. [24] Agüero A, Gutiérrez M, Muelas R. Steam oxidation testing of coatings for next generation steam power plant components[J]. Materials Science Forum, 2006, 522/523: 205-212. [25] 张联盟. 材料科学基础[M]. 武汉: 武汉理工大学出版社, 2008: 72-89. |