[1] 项少松. 钨对DIEVAR热作模具钢组织和性能的影响[D]. 上海: 上海工程技术大学, 2021. Xiang Shaosong. Effect of tungsten on microstructure and properties of DIEVAR hot work die steel[D]. Shanghai: Shanghai University of Engineering Science, 2021. [2] 张竣宣. QPQT处理对H13热作模具钢组织及热疲劳性能的影响[D]. 昆明: 昆明理工大学, 2023. [3] 谢奕心, 程晓农, 鞠玉琳, 等. H13及H13改进型热作模具钢热处理过程中碳化物析出演化行为研究进展[J]. 材料导报, 2023, 37(23): 177-184. Xie Yixin, Cheng Xiaonong, Ju Yulin, et al. Research progress on carbide precipitation and evolution for H13 and H13-modifies hot working die steels during different heat treatment schedules[J]. Materials Reports, 2023, 37(23): 177-184. [4] 计天予, 吴晓春. 新型热作模具钢SDH3-Mod的热稳机理研究[J]. 材料科学与工艺, 2014, 22(6): 29-35. Ji Tianyu, Wu Xiaochun. Thermal stability mechanism of a new hot working die steel SDH3-Mod[J]. Materials Science & Technology, 2014, 22(6): 29-35. [5] 沈俞涛, 左鹏鹏, 吴晓春. Mo对4Cr5Mo2V型热作模具钢热稳定性能的影响[J]. 金属热处理, 2022, 47(12): 168-174. Shen Yutao, Zuo Pengpeng, Wu Xiaochun. Effect of Mo on thermal stability of 4Cr5Mo2V hot-work die steel[J]. Heat Treatment of Metals, 2022, 47(12): 168-174. [6] Di Y, Ma D, Chi H, et al. Thermal stability and thermal fatigue resistance improvement of new high toughness 5%Cr hot working die steel[J]. Journal of Materials Research and Technology, 2024, 33: 2464-2477. [7] Du N, Liu H, Fu P, et al. Microstructural stability and softening resistance of a novel hot-work die steel[J]. Crystals, 2020, 10(4): 238. [8] Zhang Z, Zhang J, Lian Y, et al. Effects of vanadium content on the carbides transformation and strengthening mechanism of MPS700V hot-work die steel at room and elevated temperatures[J]. Materials Science and Engineering A, 2021, 813, 141091. [9] Li L, Zhang W, Gu J, et al. Effect of nitrogen-substituted carbon on thermal stability of Cr-Mo-V hot-working die steel[J]. Steel Research International, 2020, 91(10): 2000206. [10] 李 爽, 王 真, 付俊薇, 等. 新型Cr-Mo-V热冲压模具钢的热导率和回火稳定性[J]. 金属热处理, 2023, 48(7): 66-72. Li Shuang, Wang Zhen, Fu Junwei, et al. Thermal conductivity and tempering stability of a novel Cr-Mo-V hot stamping die steel[J]. Heat Treatment of Metals, 2023, 48(7): 66-72. [11] Feng H, Wang H J, Li H B, et al. Softening behavior and hardness prediction of H13 hot-work die steel during isothermal tempering[J]. Steel Research International, 2024, 95(1): 2300251. [12] 孙立国, 周 健, 殷军伟, 等. 碳含量对4Cr5Mo2V热作模具钢显微组织及热稳定性的影响[J]. 机械工程材料, 2020, 44(8): 38-43. Sun Liguo, Zhou Jian, Yin Junwei, et al. Effect of carbon content on microstructure and thermal stability of 4Cr5Mo2V hot work die steel[J]. Materials for Mechanical Engineering, 2020, 44(8): 38-43. [13] Ding H, Liu T, Wei J, et al. Microstructure and tempering softening mechanism of modified H13 steel with the addition of tungsten, molybdenum, and lowering of chromium[J]. Materials & Design, 2022, 224: 111317. [14] 夏 晟. 新型热作模具钢4Cr4Mo3Ni5V2N组织与性能研究[D]. 南京: 东南大学, 2020. Xia Sheng. Study on microstructure and performance of 4Cr4Mo3Ni5V2N hot working die steel[D]. Nanjing: Southeast University, 2020. [15] 郑 琦, 袁 飞, 杜京伦, 等. 热处理对W-Mo-V系改进型热作模具钢组织及力学性能的影响[J]. 材料热处理学报, 2022, 43(9): 94-102. Zheng Qi, Yuan Fei, Du Jinglun, et al. Effect of heat treatment on microstructure and mechanical properties of W-Mo-V series improved hot work die steel[J]. Transactions of Materials and Heat Treatment, 2022, 43(9): 94-102. [16] Durica J, Ptačinová J, Dománková M, et al. Changes in microstructure of ledeburitic tool steel due to vacuum austenitizing and quenching, sub-zero treatments at-140 ℃ and tempering[J]. Vacuum, 2019, 170: 108977. [17] Euser V K, Williamson D L, Clarke A J, et al. Limiting retained austenite decomposition in quenched and tempered steels: Influences of rapid tempering and silicon[J]. ISIJ International, 2020, 60(12): 2990-3000. [18] HajyAkbary F, Sietsma J, Böttger A J, et al. An improved X-ray diffraction analysis method to characterize dislocation density in lath martensitic structures[J]. Materials Science and Engineering A, 2015, 639: 208-218. [19] Liu F, Sommer F, Bos C, et al. Analysis of solid state phase transformation kinetics: models and recipes[J]. International Materials Reviews, 2007, 52(4): 193-212. [20] Dos Santos D C, Magnabosco R. Kinetic study to predict sigma phase formation in duplex stainless steels[J]. Metallurgical and Materials Transactions A, 2016, 47(4): 1554-1565. [21] Pradell T, Crespo D, Clavaguera N, et al. Diffusion controlled grain growth in primary crystallization: Avrami exponents revisited[J]. Journal of Physics: Condensed Matter, 1998, 10(17): 3833. |