金属热处理 ›› 2025, Vol. 50 ›› Issue (3): 125-131.DOI: 10.13251/j.issn.0254-6051.2025.03.020

• 工艺研究 • 上一篇    下一篇

基于BP神经网络预测热处理后35CrMoA钢的低温冲击性能

金帅1, 王会强1, 崔建英2, 王艳山3, 闫学兰4, 李文翔5   

  1. 1.河北农业大学 机电工程学院, 河北 保定 071001;
    2.巨力索具股份有限公司, 河北 保定 072550;
    3.保定市东利机械制造股份有限公司, 河北 保定 071100;
    4.保定金阳光能源装备科技有限公司, 河北 保定 071000;
    5.馆陶县飞翔机械装备制造有限公司, 河北 邯郸 057750
  • 收稿日期:2024-10-27 修回日期:2025-01-12 出版日期:2025-03-25 发布日期:2025-05-14
  • 通讯作者: 王会强,教授,博士,E-mail:317395437@qq.com
  • 作者简介:金帅(1998—),男,硕士研究生,主要研究方向为金属材料热处理,E-mail:2074265277@qq.com。
  • 基金资助:
    河北省科技计划(20312201D);河北省重大成果转化项目(21287001Z)

Prediction of low-temperature impact property of 35CrMoA steel after heat treatment based on BP neural network

Jin Shuai1, Wang Huiqiang1, Cui Jianying2, Wang Yanshan3, Yan Xuelan4, Li Wenxiang5   

  1. 1. College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding Hebei 071001, China;
    2. Juli Sling Co., Ltd., Baoding Hebei 072550, China;
    3. Baoding Dongli Machinery Co., Ltd., Baoding Hebei 071100, China;
    4. Baoding Golden Sunshine Energy Equipment Technology Co., Ltd., Baoding Hebei 071000, China;
    5. Guantao Flying Machinery Equipment Manufacturing Co., Ltd., Handan Hebei 057750, China
  • Received:2024-10-27 Revised:2025-01-12 Online:2025-03-25 Published:2025-05-14

摘要: 为了预测正火态35CrMoA钢试棒进行亚温淬火和高温回火后在-45 ℃的低温冲击性能,采用不同热处理温度下-45 ℃低温冲击性能实际状态参量作为学习样本,对3层BP人工神经网络(BPANN)进行训练和预测低温冲击性能。结果表明:BPANN能够对正火态35CrMoA钢试样在不同亚温淬火温度、回火温度下的-45 ℃低温冲击性能进行预测,误差范围区间为5%~9%;BPANN的预测值比实际值低,可通过增加训练样本提升预测精确度,预测数据变化趋势与实测变化趋势相同,能够实现具有参考意义的预测。本研究可通过预测减少实际生产中试验次数,节约试验成本,有助于35CrMoA钢在其他亚温淬火温度下的低温冲击性能预测的研究。

关键词: 35CrMoA钢, BP神经网络, 热稳定性, 亚温淬火, 预测

Abstract: In order to predict the low-temperature impact performance at -45 ℃ of normalized 35CrMoA steel test bars after subcritical quenching and high-temperature tempering, the actual state parameters of low-temperature impact property at -45 ℃ under different heat treatment temperatures were used as learning specimens to train and predict the low-temperature impact property using a three-layer back propagation artificial neural network (BPANN). The results show that the BPANN can predict the low-temperature impact property at -45 ℃ of the 35CrMoA steel specimens subcritical quenched at different temperatures and tempered at different temperatures, with an error range of 5% to 9%. The predicted values of the BPANN are lower than the actual values, and the prediction accuracy can be improved by increasing the training specimens. The trend of the predicted data is the same as that of the measured data, and it can achieve a meaningful prediction. This study can reduce the number of tests in actual production through prediction, save test costs, and is helpful for the research on the low-temperature impact property prediction of the 35CrMoA steel at other subcritical quenching temperatures.

Key words: 35CrMoA steel, BP neural network, thermal stability, subcritical quenching, prediction

中图分类号: