[1] 郑 凯, 曹文全, 俞 峰, 等. 高温不锈渗碳轴承钢的研发现状与进展[J]. 钢铁, 2022, 57(7): 125-136. Zheng Kai, Cao Wenquan, Yu Feng, et al. Research status and progress of high temperature stainless carburized bearing steel[J]. Iron and Steel, 2022, 57(7): 125-136. [2] Seo S, Choi H, Lee G, et al. Effect of cooling rate on microstructure and hardness during solution treatment and aging process of Ti-6Al-4V alloy for aerospace components[J]. Journal of Materials Engineering and Performance, 2021, 30(5): 1-10. [3] Calderon-erández J W, Gonzalez-amirez M F, Sepulveda-Castano J M, et al. Electrochemical characterization of 13Cr low carbon martensitic stainless steel - Corrosion study with a mini-cell setup[J]. Journal of Materials Research and Technology, 2022, 21: 2989-2998. [4] Chen X, Zheng L, Feng S, et al. Tempering influence on microstructural evolution and mechanical properties in a core of CSS-42L bearing steel[J]. Materials Science and Engineering A, 2022, 861: 144233. [5] 田 沛, 李晨浩, 白 洁, 等. 材料及毛坯成形工艺对轴承寿命的影响研究[J]. 热处理技术与装备, 2023, 44(3): 15-18. Tian Pei, Li Chenhao, Bai Jie, et al. Research on the influence of materials and blank forming processes on bearing life[J]. Heat Treatment Technology and Equipment, 2023, 44(3): 15-18. [6] 俞 峰, 陈兴品, 徐海峰, 等. 滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向[J]. 金属学报, 2020, 56(4): 513-522. Yu Feng, Chen Xingpin, Xu Haifeng, et al. Current status of metallurgical quality and fatigue performance of rolling bearing steel and development direction of high-end bearing steel[J]. Acta Metallurgica Sinica, 2020, 56(4): 513-522. [7] Liu Z B, Yang Z, Wang X H, et al. Enhanced strength-ductility synergy in a new 2.2 GPa grade ultra-high strength stainless steel with balanced fracture toughness: Elucidating the role of duplex aging treatment[J]. Journal of Alloys and Compounds, 2022, 928: 167135. [8] 程 瑄, 桂晓露, 高古辉. 先进高强钢中的残留奧氏体: 综述[J]. 材料导报, 2023, 37(7): 21070186. Chen Xuan, Gui Xiaolu, Gao Guhui. Retained austenite in advanced high strength steels: A review[J]. Materials Reports, 2023, 37(7): 21070186. [9] Leskovek V, Kalin M, Viintin J. Influence of deep-cryogenic treatment on wear resistance of vacuum heat-treated HSS[J]. Vacuum, 2006, 80(6): 507-518. [10] Akhbarizadeh A, Shafyei A, Golozar M A. Effects of cryogenic treatment on wear behavior of D6 tool steel[J]. Materials and Design, 2009, 30(8): 3259-3264. [11] 李 雄, 李士燕, 张鸿冰, 等. 6W-5Mo-4Cr-2V高速钢深冷处理微观组织结构的分析[J]. 上海交通大学学报, 2002, 36(7): 905-907. Li Xiong, Li Shiyan, Zhang Hongbing, et al. Microstructure of 6W-5Mo-4Cr-2V high speed steel after cryogenic treatment[J]. Journal of Shanghai Jiao Tong University, 2002, 36(7): 905-907. [12] Meng F, Tagashira K, Sohma H. Wear resistance and microstructure of cryogenic treated Fe-1.4Cr-1C bearing steel[J]. Scripta Metallurgica et Materialia, 1994, 31(7): 865-868. [13] Kang C P, Liu F B, Jiang J H, et al. Effect of cryogenic treatment on microstructure evolution and mechanical properties of high nitrogen plastic die steel[J]. Journal of Materials Research and Technology, 2021, 15: 5128-5140. [14] Zhang T, Hu J, Wang C, et al. Effects of deep cryogenic treatment on the microstructure and mechanical properties of an ultrahigh strength TRIP aided bainitic steel[J]. Materials Characterization, 2021, 178: 111247. [15] Ungár T, Ott S, Sanders P G, et al. Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis[J]. Acta Materialia, 1998, 46(10): 3693-3699. [16] Li S, Xiao M, Ye G, et al. Effects of deep cryogenic treatment on microstructural evolution and alloy phases precipitation of a new low carbon martensitic stainless bearing steel during aging[J]. Materials Science and Engineering A, 2018, 732: 167-177. [17] Ayer R, Machmeier P M. Microstructural basis for the effect of chromium on the strength and toughness of AF1410-based high performance steels[J]. Metallurgical and Materials Transactions A, 1996, 27(9): 2510-2517. [18] 徐祖耀, 吕 伟, 王永瑞. 稀土对低碳钢马氏体相变的影响[J]. 钢铁, 1995, 30(4): 52-58. Xu Zuyao, Lü Wei, Wang Yongrui. Influence of rare earth elements on martensitic transformation in a low carbon steel[J]. Iron and Steel, 1995, 30(4): 52-58. [19] Arnell R, Ridal K, Durnin J. Determination of retained austenite in steel by X-ray diffraction[J]. Iron and Steel Institute of Japan, 1968, 10: 206. [20] 田春英, 董 纪, 王 军, 等. 淬火温度对5Cr15MoV钢空冷淬火组织与性能的影响[J]. 金属热处理, 2022, 47(8): 211-216. Tian Chunying, Dong Ji, Wang Jun, et al. Effect of quenching temperature on microstructure and properties of 5Cr15MoV steel by air-cooling quenching[J]. Heat Treatment of Metals, 2022, 47(8): 211-216. [21] Ungár T, Dragomir I, Révész Á, et al. The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice[J]. Journal of Applied Crystallography, 1999, 32(5): 992-1002. [22] Mikus E B, Hughel T J, Gerty J M, et al. The dimensional stability of a precision ball bearing material[J]. Transactions of the ASME, 1960, 52: 307. |