[1] Luo H, Yu Q, Dong C, et al. Influence of the aging time on the microstructure and electrochemical behaviour of a 15-5PH ultra-high strength stainless steel[J]. Corrosion Science, 2018, 139: 185-196. [2] Isfahany A N, Saghafian H, Borhani G. The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel[J]. Journal of Alloys & Compounds, 2011, 509(9): 3931-3936. [3] Ge J G, Lin J, Fu H G, et al. A spatial periodicity of microstructural evolution and anti-indentation properties of wire-arc additive manufacturing 2Cr13 thin-wall part[J]. Materials & Design, 2018, 160: 218-228. [4] Koese C, Kacar R. The effect of preheat & post weld heat treatment on the laser weldability of AISI 420 martensitic stainless steel[J]. Materials and Design, 2014, 64: 221-226. [5] 王良龙. 403钢热加工工艺的研究[D]. 上海: 上海大学, 2013. Wang Lianglong. Study on hot working process of 403 steel[D]. Shanghai: Shanghai University, 2013. [6] 李照国, 王 珂, 纪显彬, 等. 回火温度对00Cr13Ni5Mo超级马氏体不锈钢组织及性能的影响[J]. 金属热处理, 2021, 46(5): 95-99. Li Zhaoguo, Wang Ke, Ji Xianbin, et al. Effect of tempering temperature on microstructure and properties of 00Cr13Ni5Mo super martensitic stainless steel[J]. Heat Treatment of Metals, 2021, 46(5): 95-99. [7] 刘永宝, 周丽娜, 刘 明, 等. 回火参数对G95Cr18马氏体不锈钢显微组织及力学性能的影响[J]. 金属热处理, 2023, 48(7): 103-111. Liu Yongbao, Zhou Lina, Liu Ming, et al. Effect of tempering parameters on microstructure and mechanical properties of G95Cr18 martensitic stainless steel[J]. Heat Treatment of Metals, 2023, 48(7): 103-111. [8] Nemani A V, Ghaffari M, Salahi S, et al. Effects of post-printing heat treatment on the microstructure and mechanical properties of a wire arc additive manufactured 420 martensitic stainless steel part[J]. Materials Science and Engineering A, 2021, 813: 141167. [9] Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels[J]. Materials Science and Engineering A, 2006, 438(1): 237-240. [10] 李渤渤. 低密度Ti2AlNb基合金板材制备及组织与力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. Li Bobo. Plate preparation, microstructure and mechanical properties of low-density Ti2AlNb-based alloys[D]. Harbin: Harbin Institute of Technology, 2011. [11] Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces[J]. Acta Materialia, 2016, 116: 43-52. [12] Veprek Stan. The search for novel, superhard materials[J]. Journal of Vacuum Science and Technology A, 1999, 17(5): 2401-2420. |