[1] 王 硕, 张 弛, 王俊升, 等. 铝锂合金纳米析出相结构与性能综述[J]. 航空制造技术, 2021, 64(9): 68-76, 92. Wang Shuo, Zhang Chi, Wang Junsheng, et al. Structures and properties of nano-precipitates in Al-Li alloys[J]. Aeronautical Manufacturing Technology, 2021, 64(9): 68-76, 92. [2] Rioja R J, Liu J. The evolution of Al-Li base products for aerospace and space applications[J]. Metallurgical and Materials Transactions A, 2012, 43(9): 3325-3337. [3] 刘志鹏, 肖 阳, 马凯杰, 等. 航空航天铝锂合金开发及其研究进展[J]. 材料热处理学报, 2023, 44(11): 8-17. Liu Zhipeng, Xiao Yang, Ma Kaijie, et al. Development and research progress of aerospace Al-Li alloys[J]. Transactions of Materials and Heat Treatment, 2023, 44(11): 8-17. [4] Gumbmann E, Lefebvre W, De Geuser F, et al. The effect of minor solute additions on the precipitation path of an Al-Cu-Li alloy[J]. Acta Materialia, 2016, 115: 104-114. [5] El-Aty Ali Abd, Xu Yong, Guo Xunzhong, et al. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review[J]. Journal of Advanced Research, 2018, 10: 49-67. [6] Zhang Jinshuo, Wu Guohua, Zhang Liang, et al. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy-synergistic effect of Sc alloying and optimized artificial ageing scheme[J]. Journal of Materials Science and Technology, 2022, 96: 212-225. [7] Jiang Bo, Yi Danqing, Yi Xiaoou, et al. Effect of trace amounts of added Sc on microstructure and mechanical properties of 2055 aluminum alloy[J]. Materials Characterization, 2018, 141: 248-259. [8] 刘 欣, 王国庆, 李曙光, 等. 重型运载火箭关键制造技术发展展望[J]. 航天制造技术, 2013(1): 1-6. Liu Xin, Wang Guoqing, Li Shuguang, et al. Forecasts on crucial manufacturing technology develeopment development of heavy lift launch vehicle[J]. Aerospace Manufacturing Technology, 2013(1): 1-6. [9] Mao Z, Chen W, Seidman D N, et al. First-principles study of the nucleation and stability of ordered precipitates in ternary Al-Sc-Li alloys[J]. Acta Materialia, 2011, 59(8): 3012-3023. [10] Jia Min, Zheng Ziqiao, Gong Zhu. Microstructure evolution of the 1469 Al-Cu-Li-Sc alloy during homogenization[J]. Journal of Alloys and Compounds, 2014, 614: 131-139. [11] 卢雅琳, 黄 勇, 王 健. 纳米TiC对Al-Cu合金微观组织和性能的影响[J]. 金属热处理, 2023, 48(3): 275-279. Lu Yalin, Huang Yong, Wang Jian. Effect of nano-sized TiC on microstructure and properties of Al-Cu alloy[J]. Heat Treatment of Metals, 2023, 48(3): 275-279. [12] Ovri H, Jägle E A, Stark A, et al. Microstructural influences on strengthening in a naturally aged and overaged Al-Cu-Li-Mg based alloy[J]. Materials Science and Engineering A, 2015, 637: 162-169. [13] Peng Zhuowei, Li Jinfeng, Sang Fengjian, et al. Structures and tensile properties of Sc-containing 1445 Al-Li alloy sheet[J]. Journal of Alloys and Compounds, 2018, 747: 471-483. [14] Liu Jing, Yao Pei, Zhao Naiqin, et al. Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu alloys[J]. Journal of Alloys and Compounds, 2016, 657: 717-725. [15] Shi Chunchang, Zhang Liang, Wu Guohua, et al. Effects of Sc addition on the microstructure and mechanical properties of cast Al-3Li-1.5Cu-0.15Zr alloy[J]. Materials Science and Engineering A, 2017, 680: 232-238. [16] Ma Juan, Yan Desheng, Rong Lijian, et al. Effect of Sc addition on microstructure and mechanical properties of 1460 alloy[J]. Progress in Natural Science: Materials International, 2014, 24(1): 13-18. |