[1] Zhou L J, Dai J, Li Y, et al. Research progress of steels for nuclear reactor pressure vessels[J]. Materials, 2022, 15(24): 8761. [2] Dai X, Yang B. The effect of microstructure evolution on fatigue property of SA508Gr.4N steel for nuclear reactor pressure vessels[J]. Journal of Nuclear Materials, 2023, 584: 154544. [3] 郭 钰. 磷和铈对SA508-4N核压力容器钢低温脆性和热塑性的影响[D]. 哈尔滨: 哈尔滨工业大学, 2021. [4] 崔同明, 核反应堆压力容器不锈钢堆焊层在高温水中的应力腐蚀开裂行为[D]. 上海: 上海大学, 2022. [5] Que Z, Heczko M, Kuběna I, et al. Microstructural characterization of the synergic effects of dynamic strain ageing and hydrogen on fracture behaviour of low-alloy RPV steels in hightemperature water environments[J]. Materials Characterization, 2020, 165: 110405. [6] Li W Y, Cao R H, Xu L N, et al. The role of hydrogen in the corrosion and cracking of steels-a review[J]. Corrosion Communications, 2021, 4: 23-32. [7] Que Z, Seifert H P, Mazaznova V, et al. Hydrogen embrittlement on fracture resistance of low-alloy reactor pressure vessel steel with high dynamic strain aging at 288 ℃[J]. Materials Letters, 2022, 308: 131269. [8] Rhode M, Steger J, Steppan E, et al. Effect of hydrogen on mechanical properties of heat affected zone of a reactor pressure vessel steel grade[J]. Welding in the World, 2016, 60: 623-638. [9] Doshida T, Takai K. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content[J]. Acta Materialia, 2014, 79: 93-107. [10] Singh R, Singh V, Arora A, et al. In-situ investigations of hydrogen influenced crack initiation and propagation under tensile and low cycle fatigue loadings in RPV steel[J]. Journal of Nuclear Materials, 2020, 529: 151912. [11] Rao G S, Yagodzinskyy Y, Que Z, et al. Study on hydrogen embrittlement and dynamic strain ageing on low-alloy reactor pressure vessel steels[J]. Journal of Nuclear Materials, 2021, 556: 153161. [12] ASTM A508/A508M-18. Standard specification for quenched and tempered vacuum-treated carbon and alloy steel forgings for pressure vessels[S]. United States: ASTM International, 2018. [13] 杨雄飞, 于 浩. 微合金化TRIP型退火马氏体钢氢渗透行为研究[J]. 钢铁钒钛, 2019, 40(4): 126-131. Yang Xiongfei, Yu Hao. Hydrogen permeation behaviors of microalloyed TRIP-assiisted annealed martensitic steels[J]. Iron Steel Vanadium Titanium, 2019, 40(4): 126-131. [14] 蔡贞祥, 程晓英, 彭 浩, 等. 回火温度对含Nb低合金高强度钢氢行为的影响[J]. 金属热处理, 2023, 48(4): 45-52. Cai Zhenxiang, Cheng Xiaoying, Peng Hao, et al. Effect of tempering temperature on hydrogen behavior of Nb-containing HSLA steel[J]. Heat Treatment of Metals, 2023, 48(4): 45-52. [15] 孙永伟, 陈继志, 刘 军. 1000 MPa级0Cr16Ni5Mo钢的氢脆敏感性研究[J]. 金属学报, 2015, 51(11): 1315-1324. Sun Yongwei, Chen Jizhi, Liu Jun. Study on hydrogen embrittlement susceptibility of 1000 MPa grade 0Cr16Ni5Mo steel[J]. Acta Metallurgica Sinica, 2015, 51(11): 1315-1324. [16] 石荣建. 纳米析出相对马氏体钢氢脆性能影响机制的研究[D]. 北京: 北京科技大学, 2021. [17] Wang Y, Hu S, Li Y, et al. Improved hydrogen embrittlement resistance after quenching-tempering treatment for a Cr-Mo-V high strength steel[J]. International Journal of Hydrogen Energy, 2019, 44(54): 29017-29026. [18] 张海旭. Nb、Ni元素对高强度螺栓钢延迟断裂行为的影响[D]. 北京: 北京交通大学, 2016. [19] 惠卫军, 董 瀚, 王毛球, 等. 钒对高强度钢耐延迟断裂性能的影响[J]. 金属热处理, 2002, 27(1): 10-12. Hui Weijun, Dong Han, Wang Maoqiu, et al. Effect of vanadium microalloying on delayed fracture resistance of high strength steel[J]. Heat Treatment of Metals, 2002, 27(1): 10-12. [20] 刘晨洋, 任 英, 任 强, 等. 电流密度对DH980高强钢氢扩散及氢脆行为的影响[J]. 钢铁研究学报, 2023, 35(11): 1394-1401. Liu Chenyang, Ren Ying, Ren Qiang, et al. Effect of current density on hydrogen diffusion and hydrogen embrittlement behavior of DH980 high strength steel[J]. Journal of Iron and Steel Research, 2023, 35(11): 1394-1401. [21] Koyama K, Tasan C C, Akiyama E, et al. Hydrogen-assisted decohesion and localized plasticity in dual-phase steel[J]. Acta Materialia, 2014, 70: 174-187. |