金属热处理 ›› 2025, Vol. 50 ›› Issue (6): 95-101.DOI: 10.13251/j.issn.0254-6051.2025.06.015

• 组织与性能 • 上一篇    下一篇

核压力容器用SA508Gr.3和SA508Gr.4N钢的氢脆敏感性

宁有义1, 代鑫1,2, 董庆2,3, 王利军2,3, 巩延杰2,3, 孙红智2,3, 陈连生1   

  1. 1.华北理工大学 冶金与能源学院, 河北 唐山 063210;
    2.邢台钢铁有限责任公司, 河北 邢台 054027;
    3.河北邢钢科技有限公司, 河北 邢台 054700
  • 收稿日期:2024-12-01 修回日期:2025-03-19 出版日期:2025-06-25 发布日期:2025-07-08
  • 通讯作者: 代 鑫,讲师,博士,E-mail: daixin0529@ncst.edu.cn
  • 作者简介:宁有义(2004—),男,本科生,主要研究方向为核压力容器用钢的组织与性能,E-mail: ning101906@163.com。
  • 基金资助:
    河北省自然科学基金(E2022209049);唐山市科技计划(22130206G);河北省高等学校科学研究项目(QN2023086);华北理工大学冶金与能源学院青年教师发展基金(YJY20244438)

Hydrogen embrittlement susceptibility of SA508Gr.3 and SA508Gr.4N steels for nuclear reactor pressure vessels

Ning Youyi1, Dai Xin1,2, Dong Qing2,3, Wang Lijun2,3, Gong Yanjie2,3, Sun Hongzhi2,3, Chen Liansheng1   

  1. 1. College of Metallurgy and Energy, North China University of Science and Technology,Tangshan Hebei 063210, China;
    2. Xingtai Iron and Steel Co., Ltd., Xingtai Hebei 054027, China;
    3. Hebei Xinggang Technology Co., Ltd., Xingtai Hebei 054700, China
  • Received:2024-12-01 Revised:2025-03-19 Online:2025-06-25 Published:2025-07-08

摘要: 针对现役SA508Gr.3钢和第四代SA508Gr.4N钢,采用OM、SEM和EBSD等观察其组织,通过氢渗透仪器测试其氢扩散系数,采用热脱氢分析仪对比其氢含量差异,通过动态充氢慢应变速率拉伸试验研究其氢脆敏感性及断口特征,对比分析两种钢的组织性能差异。结果表明,与SA508Gr.3钢相比,SA508Gr.4N钢具有更多的大角度晶界体积分数和更细小的碳化物,二者的氢扩散系数分别为3.37×10-6 cm2/s和6.12×10-7 cm2/s,后者表现出更小的氢扩散速率和更多的氢含量。充氢前,SA508Gr.3钢的抗拉强度为721.3 MPa,断后伸长率为20.8%;SA508Gr.4N钢的抗拉强度为801.3 MPa,断后伸长率为22.5%。充氢后,SA508Gr.3钢的抗拉强度为708.8 MPa,断后伸长率为14.2%;SA508Gr.4N钢的抗拉强度为786.3 MPa,断后伸长率为11.8%。充氢前后,SA508Gr.3钢力学性能均低于SA508Gr.4N钢,二者的氢脆敏感性分别为31.7%和47.6%。SA508Gr.4N钢对氢更加敏感,抗氢脆性能更差,这与SA508Gr.4N钢中具有更多的可逆氢有关。此外,充氢前二者的断裂方式均为韧性断裂;充氢后,断裂方式均转变为脆性断裂,这与氢在晶界处的聚集有关。

关键词: 核压力容器, 氢扩散系数, 氢脆敏感性

Abstract: For in-service SA508Gr.3 steel and fourth-generation SA508Gr.4N steel used in nuclear reactor pressure vessels, their microstructure was characterized by means of OM, SEM, and EBSD. Hydrogen diffusion coefficients were measured by using a hydrogen permeation apparatus, hydrogen content difference was compared via a thermal dehydrogenation analyzer, and hydrogen embrittlement susceptibility as well as fracture characteristics was investigated through dynamic hydrogen-charging slow strain rate tensile (SSRT) tests. Microstructure-property differences between the two steels were comparatively analyzed. The results show that the SA508Gr.4N steel exhibits a higher volume fraction of high-angle grain boundaries and finer carbides compared to the SA508Gr.3 steel. Their hydrogen diffusion coefficients are 3.37×10-6 cm2/s and 6.12×10-7 cm2/s, respectively, indicating that the SA508Gr.4N steel has a lower hydrogen diffusion rate but higher hydrogen retention capacity. Before hydrogen charging, the tensile strengths of the SA508Gr.3 and SA508Gr.4N steels are 721.3 MPa and 801.3 MPa, with elongations after fracture of 20.8% and 22.5%, respectively. After hydrogen charging, these values decrease to 708.8 MPa/14.2% and 786.3 MPa/11.8%, respectively. Though mechanical properties of the SA508Gr.3 steel remain lower than those of the SA508Gr.4N steel both before and after hydrogen charging, hydrogen embrittlement susceptibilities, defined by elongation reduction, are 31.7% for the SA508Gr.3 steel and 47.6% for the SA508Gr.4N steel, which correlates with higher content of reversible hydrogen of the SA508Gr.4N steel. Furthermore, ductile fracture dominates in both steels before hydrogen charging. After hydrogen charging, fracture modes of both steels transform to brittle fracture, which is attributed to hydrogen accumulation at grain boundaries.

Key words: nuclear reactor pressure vessel, hydrogen diffusion coefficient, hydrogen embrittlement susceptibility

中图分类号: