[1]Barbier D. Extension of the martensite transformation temperature relation to larger alloying elements and contents[J]. Advanced Engineering Materials, 2014, 16(1): 122-127. [2]朱祖昌. 马氏体转变(五)[J]. 热处理技术与装备, 2012, 33(3): 65-68. Zhu Zuchang. Martensite transformation (5)[J]. Heat Treatment Technology and Equipment, 2012, 33(3): 65-68. [3]Ansell G S, Donachie S J, Messler R W. The effect of quench rate on the martensitic transformation in Fe-C alloys[J]. Metallurgical Transactions, 1971, 2(9): 2443-2449. [4]高秋志, 刘家咏, 刘永长, 等. 冷却速度对高Cr铁素体耐热钢马氏体相变和微观组织的影响[J]. 金属热处理, 2012, 37(5): 20-23. Gao Qiuzhi, Liu Jiayong, Liu Yongchang, et al. The effect of cooling rate on martensite transformation and microstructure of high Cr ferritic heat-resistant steel[J]. Heat Treatment of Metals, 2012, 37(5): 20-23. [5]宁保群, 刘永长, 高志眀, 等. 预冷淬火温度对T91铁素体耐热钢马氏体转变温度的影响[J]. 钢铁, 2009, 44(7): 37-39. Ning Baoqun, Liu Yongchang, Gao Zhiming, et al. The effect of pre-cooling quenching temperature on the martensite transformation temperature of T91 ferritic heat-resistant steel[J]. Iron and Steel, 2009, 44(7): 37-39. [6]Zheng Y, Wang F, Li C, et al. Effect of martensite structure and carbide precipitates on mechanical properties of Cr-Mo alloy steel with different cooling rate[J]. High Temperature Materials and Processes, 2018, 38(1): 113-124. [7]Qiao Z X, Liu Y C, Yu L M, et al. Effect of cooling rate on microstructural formation and hardness of 30CrNi3Mo steel[J]. Applied Physics A, 2009, 95(3): 917-922. [8]曹燕光. 渗碳齿轮钢淬透性及其热处理变形和疲劳性能研究[D]. 北京: 钢铁研究总院, 2017. Cao Yanguang. Research on hardenability, heat treatment deformation and fatigue properties of carburized gear steel [D]. Beijing: Central Iron and Steel Research Institute, 2017. [9]Kajiwara S. Roles of dislocations and grain boundaries in martensite nucleation[J]. Metallurgical and Materials Transactions A, 1986, 17: 1693-1702. [10]Brachet J C, Gavard L, Boussidan C, et al. Modelling of phase transformations occurring in low activation martensitic steels[J]. Journal of Nuclear Materials, 1998, 258-263: 1307-1311. [11]Brooks J W, Loretto M H, Smallman R E. Direct observations of martensite nuclei in stainless steel[J]. Acta Metallurgica, 1979, 27(12): 1839-1847. [12]Alamo A, Brachet J C, Castaing A, et al. Physical metallurgy and mechanical behaviour of FeCrWTaV low activation martensitic steels: Effects of chemical composition[J]. Journal of Nuclear Materials, 1998, 258-263: 1228-1235. [13]Kajiwara Setsuo. Mechanism of isothermal martensitic transformation[J]. Materials Transactions, JIM, 1992, 33(11): 1027-1034. [14]Kakeshita T, Saburi T, Shimizu K. Effects of hydrostatic pressure and magnetic field on martensitic transformations [J]. Materials Science and Engineering A, 1999, 273-275: 21-39. [15]Wang X, Pan T, Wang H, et al. Investigation of the toughness of low carbon tempered martensite in the surface of Ni-Cr-Mo-B ultra-heavy plate steel[J]. Acta Metallurgica Sinica, 2012, 48(4): 401-406. [16]徐 军. 不同淬火速度对60Si2CrVAT弹簧钢微观组织与力学性能的影响[D]. 贵阳: 贵州大学, 2015. Xu Jun. The effect of different quenching speeds on the microstructure and mechanical properties of 60Si2CrVAT spring steel[D]. Guiyang: Guizhou University, 2015. [17]Guo C, Hao L, Li S, et al. Effect of lath martensite submicrostructure on mechanical properties and crack propagation behaviour by in-situ tension in 0.09C-1.7Mn-0.6Cr steel[J]. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43(11): 2550-2559. [18]王春芳. 低合金马氏体钢强韧性组织控制单元的研究[D]. 北京: 钢铁研究总院, 2008. Wang Chunfang. Research on the strength and toughness structure control unit of low alloy martensitic steel [D]. Beijing: Central Iron and Steel Research Institute, 2008. [19]Zheng Y, Wang F, Li C, et al. Microstructural evolution, coarsening behavior of precipitates and mechanical properties of boron bearing steel 25CrMoNbB during tempering[J]. Materials Science and Engineering A, 2018, 712: 453-465. [20]Taylor G I. The mechanism of plastic deformation of crystals. Part I. Theoretical[J]. Proceedings of the Royal Society of London, 1934, 145(855): 362-387. [21]Hall E O. The deformation and ageing of mild steel: III discussion of results[J]. Proceedings of the Physical Society, 1951, 64(9): 747-753. [22]Petch N J. The cleavage strength of polycrystals[J]. Acta Metallurgica, 1953, 1(6): 764-766. |