[1]Williams J C, Starke J E A. Progress in structural materials for aerospace systems[J]. Acta Materialia, 2003, 51(19): 5775-5799. [2]胡志杰, 冯军宁, 马忠贤, 等. 我国钛及钛合金热处理标准现状[J]. 金属热处理, 2021, 46(3): 243-246. Hu Zhijie, Feng Junning, Ma Zhongxian, et al. Current status of heat treatment standards for titanium and titanium alloys[J]. Heat Treatment of Metals, 2021, 46(3): 243-246. [3]王国迪, 景 然, 张曼雪, 等. 冷轧变形量及再结晶对TC4合金组织与性能的影响[J]. 金属热处理, 2022, 47(3): 48-52. Wang Guodi, Jing Ran, Zhang Manxue, et al. Effects of cold rolling reduction and recrystallization on microstructure and properties of TC4 alloy[J]. Heat Treatment of Metals, 2022, 47(3): 48-52. [4]Li G R, Li Y M, Wang F F, et al. Microstructure and performance of solid TC4 titanium alloy subjected to the high pulsed magnetic field treatment[J]. Journal of Alloys and Compounds, 2015, 644: 750-756. [5]Koneshlou M, Asl K M, Khomamizadeh F. Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel[J]. Cryogenics, 2011, 51(1): 55-61. [6]Baldissera P. Deep cryogenic treatment of AISI 302 stainless steel: Part I-Hardness and tensile properties[J]. Materials and Design, 2010, 31(10): 4725-4730. [7]Yuan C, Wang Y, Sang D, et al. Effects of deep cryogenic treatment on the microstructure and mechanical properties of commercial pure zirconium[J]. Journal of Alloys and Compounds, 2015, 619: 513-519. [8]Wang G, Gu K, Huang Z, et al. Improving the wear resistance of as-sprayed WC coating by deep cryogenic treatment[J]. Materials Letters, 2016, 185: 363-365. [9]Akhbarizadeh A, Amini K, Javadpour S. Effects of applying an external magnetic field during the deep cryogenic heat treatment on the corrosion resistance and wear behavior of 1.2080 tool steel[J]. Materials and Design, 2012, 41: 114-123. [10]Ma G, Chen Z D, Jiang Y, et al. Cryogenic treatment-induced martensitic transformation in Cu-Zr-Al bulk metallic glass composite[J]. Intermetallics, 2010, 18(6): 1254-1257. [11]张玉婷, 卢青波, 赵卫军. 深冷处理对W6高速钢表面残余应力的影响研究[J]. 低温工程, 2020(6): 44-47. Zhang Yuting, Lu Qingbo, Zhao Weijun. Effect of cryogenic treatment processing on surface residual stress of W6 HSS[J]. Cryogenics, 2020(6): 44-47. [12]Gu K, Zhao B, Weng Z, et al. Microstructure evolution in metastable β titanium alloy subjected to deep cryogenic treatment[J]. Materials Science and Engineering A, 2018, 723: 157-164. [13]Gu K, Zhang H, Zhao B, et al. Effect of cryogenic treatment and aging treatment on the tensile properties and microstructure of Ti-6Al-4V alloy[J]. Materials Science and Engineering A, 2013, 584: 170-176. [14]Li G R, Qin T, Fei A G, et al. Performance and microstructure of TC4 titanium alloy subjected to deep cryogenic treatment and magnetic field[J]. Journal of Alloys and Compounds, 2019, 802: 50-69. [15]Xu T F, Wang S Y, Li X C, et al. Effects of strain rate on the formation and the tensile behaviors of multimodal grain structure titanium[J]. Materials Science and Engineering A, 2020, 770: 138574. [16]Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure[J]. Proceedings of the National Academy of Sciences, 2014, 111(20): 7197-7201. |