[1] 李彩云, 邢志国, 赵向伟, 等. 强化方法对重载齿轮弯曲疲劳强度影响的研究现状与建议[J]. 材料导报, 2020, 34(11): 21146-21154. Li Caiyun, Xing Zhiguo, Zhao Xiangwei, et al. Research status and suggestions on influence of strengthening methods on bending fatigue strength of heavy-duty gear[J]. Materials Reports, 2020, 34(11): 21146-21154. [2] Gao C X, Wang C, Ren X H. Research on mining machinery gear materials[J]. Advanced Materials Research, 2012, 503-504: 680-683. [3] Lv Y, Lei L Q, Sun L N. Effect of microshot peened treatment on the fatigue behavior of laser-melted W6Mo5Cr4V2 steel gear[J]. International Journal of Fatigue, 2017, 98: 121-130. [4] 邢 壮, 邢志国, 王海斗, 等. 装甲车辆重载齿轮综合强化方法研究现状[J]. 材料导报, 2017, 31(6): 86-94. Xing Zhuang, Xing Zhiguo, Wang Haidou, et al. Research status of comprehensive strengthening methods for heavy-duty gear of armored vehicles[J]. Materials Reports, 2017, 31(6): 86-94. [5] Matlock D K, Alogab K A, Rechards M D, et al. Surface processing to improve the fatigue resistance of advanced bar steels for automotive applications[J]. Materials Research, 2005, 8(4): 453-459. [6] Zhang J W, Li W, Wang H Q, et al. A comparison of the effects of traditional shot peening and micro-shot peening on the scuffing resistance of carburized and quenched gear steel[J]. Wear, 2016, 368-369: 253-257. [7] Bag A, Delbergue D, Ajaja J, et al. Effect of different shot peening conditions on the fatigue life of 300 M steel submitted to high stress amplitudes[J]. International Journal of Fatigue, 2020, 130: 105274. [8] 高秀琴, 刘 武, 邓利刚, 等. 喷丸强化对20CrMoH渗碳齿轮表层组织和性能的影响[J]. 材料保护, 2020, 53(3): 91-94, 100. Gao Xiuqin, Liu Wu, Deng Ligang, et al. Effect of shot blasting on surface structure and performance of 20CrMoH carburizing gear[J]. Materials Protection, 2020, 53(3): 91-94, 100. [9] Zhang Y L, Wang J K, Wu L J, et al. Surface integrity and bending fatigue behavior of aeronautic gear steel under combined carburized treatment and shot peening[J]. International Journal of Fatigue, 2023, 169: 107488. [10] Kikuchi S, Minamizawa K, Arakawa J, et al. Combined effect of surface morphology and residual stress induced by fine particle and shot peening on the fatigue limit for carburized steels[J]. International Journal of Fatigue, 2023, 168: 107441. [11] Tsuji T, Fujino M, Takahashi K. Fatigue limit improvement and rendering surface defects harmless by shot peening for carburized steel[J]. Metals, 2022, 13(1): 42. [12] 刘明霞, 王 东, 张文康, 等. 喷丸强化对17-4PH不锈钢室温及高温疲劳性能的影响[J]. 材料导报, 2020, 34(11): 22124-22129. Liu Mingxia, Wang Dong, Zhang Wenkang, et al. Effect of shot peening on fatigue properties of 17-4PH stainless steel at room temperature and high temperature[J]. Materials Reports, 2020, 34(11): 22124-22129. [13] 詹 科. S30432奥氏体不锈钢喷丸强化及其表征研究[D]. 上海: 上海交通大学, 2013. Zhan Ke. Investigation of shot peening treatment on S30432 austenitic stainless steel and its characterization[D]. Shanghai: Shanghai Jiao Tong University, 2013. [14] 常晓东, 刘道新, 崔腾飞, 等. 渗碳与喷丸复合处理对18Cr2Ni4WA钢表面完整性及疲劳性能的影响[J]. 机械科学与技术, 2013, 32(11): 1584-1590. Chang Xiaodong, Liu Daoxin, Cui Tengfei, et al. Influence of carburizing combined with shot peening on surface integrity and fatigue behavior of 18Cr2Ni4WA steel[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(11): 1584-1590. [15] Asi O, Can A Ç, Pineault J, et al. The relationship between case depth and bending fatigue strength of gas carburized SAE 8620 steel[J]. Surface and Coatings Technology, 2007, 201(12): 5979-5987. [16] 马素媛, 陈 瑞, 贺笑春, 等. 0Cr13Ni4Mo马氏体不锈钢表层的喷丸强化[J]. 金属学报, 2005, 41(1): 28-32. Ma Suyuan, Chen Rui, He Xiaochun, et al. Shot peening induced strengthening of the surface layer of martensite stainless steel 0Cr13Ni4Mo[J]. Acta Metallurgica Sinica, 2005, 41(1): 28-32. [17] Yue Q B, Li Y F, Liang C, et al. Quantitative evaluation of residual stress and microstructural effects on the surface hardness of machined Ti-6Al-4V alloy with microscopic characterization techniques[J]. Journal of Materials Processing Technology, 2024, 327: 118382. [18] Shiozawa K, Morii Y, Nishino S, et al. Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime[J]. International Journal of Fatigue, 2006, 28: 1521-1532. [19] Xia B, Wang B, Zhang P, et al. Improving the high-cycle fatigue life of a high-strength spring steel for automobiles by suitable shot peening and heat treatment[J]. International Journal of Fatigue, 2022, 161: 106891. [20] Murakami Y. Effects of small defects and nonmetallic inclusions on the fatigue strength of metals[J]. Japan Society of Mechanical Engineers International Journal, 1989, 32(2): 167-180. [21] 吝 欢, 杨卯生, 舒佰坡, 等. 高氮不锈轴承钢高温旋弯疲劳性能及损伤机制[J]. 钢铁研究学报, 2019, 31(5): 475-484. Lin Huan, Yang Maosheng, Shu Baipo, et al. High temperature rotating bending fatigue behavior and damage mechanism of high nitrogen stainless bearing steel[J]. Journal of Iron and Steel Research, 2019, 31(5): 475-484. [22] Wang C Y, Luo K Y, Bu X Y, et al. Laser shock peening-induced surface gradient stress distribution and extension mechanism in corrosion fatigue life of AISI 420 stainless steel[J]. Corrosion Science, 2020, 177: 109027. |