金属热处理 ›› 2025, Vol. 50 ›› Issue (7): 304-312.DOI: 10.13251/j.issn.0254-6051.2025.07.045

• 数值模拟 • 上一篇    下一篇

极薄带硅钢用连续退火炉中辐射管加热段的数值模拟

王婷1, 崔明硕2, 易正鑫1, 廖新杰1, 冯育磊1, 陈鑫科2, 方庆艳2   

  1. 1.中冶南方工程技术有限公司, 湖北 武汉 430223;
    2.华中科技大学 煤燃烧与低碳利用全国重点实验室, 湖北 武汉 430074
  • 收稿日期:2025-02-17 修回日期:2025-05-27 出版日期:2025-07-25 发布日期:2025-07-28
  • 通讯作者: 易正鑫,高级工程师,硕士,E-mail:04141@wisdri.com
  • 作者简介:王婷(1980—),女,正高级工程师,硕士,主要研究方向为硅钢退火炉技术研究、工程实施及新技术开发,E-mail:05063@wisdir.com。

Numerical simulation of radiant tube furnace in continuous annealing furnace for ultra-thin silicon steel strip

Wang Ting1, Cui Mingshuo2, Yi Zhengxin1, Liao Xinjie1, Feng Yulei1, Chen Xinke2, Fang Qingyan2   

  1. 1. WISDRI Engineering and Research Incorporation Limted, Wuhan Hubei 430223, China;
    2. State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan Hubei 430074, China
  • Received:2025-02-17 Revised:2025-05-27 Online:2025-07-25 Published:2025-07-28

摘要: 提出了一种移动钢带温度场与退火炉内速度场、温度场的耦合传热建模方法,以钢带表面热流和温度为边界条件实现Fluent与Matlab平台的耦合计算,并使用该方法对某极薄带硅钢卧式连续退火炉辐射管加热段进行建模仿真研究,分析了退火炉与辐射管的速度场和温度场以及钢带的温度场及其均匀性。结果显示,辐射管加热段末尾板温计所测钢带温度比计算值高4.06 ℃,相对误差为0.48%,表明仿真结果能较好地反映辐射管加热段内钢带的升温过程。炉内热保护气体从后向前与钢带前进方向逆向流动,有利于携带后部热量加热退火炉前部温度较低的钢带,提升加热效率。W型和U型辐射管第1个直管段前端管壁温度较低,导致钢带宽度方向温度呈现两侧低、中间高的不均匀分布特性。

关键词: 无取向硅钢带, 连续退火炉, 辐射管, 数值模拟

Abstract: A coupled heat transfer modeling method was proposed for the temperature field of a moving steel strip and the velocity and temperature fields inside annealing furnace. Coupling calculation between Fluent and Matlab platforms was achieved by using surface heat flux and temperature of the steel strip as boundary conditions, and the method was employed to model and simulate the radiant tube furnace of a horizontal continuous annealing furnace used for ultra-thin silicon steel strip. The velocity and temperature fields of the annealing furnace and radiation tube, as well as the temperature field and uniformity of the steel strip, were analyzed. The results indicate that the temperature measured by the strip thermometer at the outlet of the radiant tube furnace exceeds the simulated value by 4.06 ℃ with a relative error of 0.48%, confirming that the simulation results can effectively reflect the heating behavior of the steel strip in the radiant tube furnace. The protective atmosphere inside the furnace flows counter to the strip movement from the back to the front, enabling the heat from the back to heat the steel strip with lower temperature in the front, and thereby enhancing heating efficiency. At the front end of the first straight section of both W-type and U-type radiant tubes, relatively low tube wall temperature results in an uneven temperature distribution across the strip width, with lower temperature at edges and higher temperature in center.

Key words: non-oriented silicon steel strip, continuous annealing furnace, radiant tube, numerical simulation

中图分类号: