[1] 张士卫. 阻尼镁合金的研究与应用综述[J]. 金属世界, 2019(4): 5-11. Zhang Shiwei. Research and application summary of damping magnesium alloys[J]. Metal World, 2019(4): 5-11. [2] 郎 强, 宋 刚, 刘黎明. 坡口角度对SK7钢/AZ31B镁合金搭接接头成形和力学性能的影响[J]. 机械工程学报, 2024, 60(23): 262-269. Lang Qiang, Song Gang, Liu Liming. Effect of groove angles on forming and mechanical properties of SK7 steel/AZ31B magnesium alloy lap joint[J]. Journal of Mechanical Engineering, 2024, 60(23): 262-269. [3] Neh K, Ullmann M, Oswald M, et al. Twin roll casting and strip rolling of several magnesium alloys[J]. Materialstoday: Proceedings, 2015, 2(S1): 45-52. [4] 吴 铮, 李全安, 陈晓亚, 等. 机器学习在镁合金应用中的研究进展[J]. 工程科学学报, 2024, 46(10): 1797-1811. Wu Zheng, Li Quanan, Chen Xiaoya, et al. Applications of machine learning on magnesium alloys[J]. Chinese Journal of Engineering, 2024, 46(10): 1797-1811. [5] Wang Lijia, Zhan Sha, Ruan Yutao, et al. Influence of grain size on twinning behavior of WE43 magnesium alloy during room-temperature compression deformation[J]. Journal of Rare Earths, 2024, 42: 2285-2292. [6] 宋要斌, 李 辉, 闫金顺, 等. Mg-8Al-4Sr-1Y镁合金轧板200 ℃拉伸性能研究[J]. 热加工工艺, 2017, 46(19): 167-169. Song Yaobin, Li Hui, Yan Jinshun, et al. Research on 200 ℃ tensile properties of rolled Mg-8Al-4Sr-1Y magnesium alloy sheet[J]. Hot Working Technology, 2017, 46(19): 167-169. [7] Xu Y, Hu L X, Sun Y. Dynamic recrystallization kinetics of as-cast AZ91D alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(6): 1683-1689. [8] 陈 明, 孙 贺, 赵红阳, 等. ME21稀土镁合金薄板微观组织的多尺度研究[J]. 中国科学: 技术科学, 2022, 52(10): 1571-1581. Chen Ming, Sun He, Zhao Hongyang, et al. Multi-scale study on microstructure of ME21 rare-earth magnesium alloy sheet[J]. Scientia Sinica (Technologica), 2022, 52(10): 1571-1581. [9] Saito Y, Ytsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process[J]. Acta Materialia, 1999, 47(2): 579-583. [10] 郝肖杰, 聂金凤, 伍玉立, 等. 累积叠轧制备层状铝基复合材料研究进展[J]. 中国有色金属学报, 2023, 33(6): 1707-1719. Hao Xiaojie, Nie Jinfeng, Wu Yuli, et al. Research progress of laminated aluminum matrix composites prepared by accumulative rolling bonding[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(6): 1707-1719. [11] Mo T Q, Chen Z J, Li B X, et al. Tailoring of interface structure and mechanical properties in ARBed 1100/7075 laminated composites by cold rolling[J]. Materials Science and Engineering A, 2019, 755(7): 97-105. [12] Guo J, Sun W, Xiang N, et al. Interfacial bonding and fracture behaviors of AZ63 magnesium alloy sheet processed by accumulative roll bonding[J]. Materials, 2023, 16(14): 4981. [13] Samiei S, Dini G, Ebrahimian-Hosseinabadi M, et al. Correlation between microstructure, mechanical properties, and corrosion characteristics of AZ31 Mg alloy processed by accumulative roll bonding process[J]. Metals and Materials International, 2023, 29(1): 192-203. [14] Li S, Jin J, Wang Y, et al. Experimental and simulation study on mechanical properties of ZK60 magnesium alloy after accumulative roll bonding[J]. Journal of Physics: Conference Series, 2024, 2842: 012036. [15] 陈兴章. 层状金属复合材料技术创新及发展趋势综述[J]. 有色金属材料与工程, 2017, 38(2): 63-66. Chen Xingzhang. Review of laminar composite metal material manufacturing technique[J]. Nonferrous Metal Materials and Engineering, 2017, 38(2): 63-66. [16] Luo Xuan, Huang Tianlin, Wang Yuhui, et al. Strong and ductile AZ31 Mg alloy with a layered bimodal structure[J]. Scientific Reports, 2019, 9(1): 5428. [17] Wang M, Jiang X, Sun H, et al. Synergistic reinforcement of Cu/Ti3SiC2/C laminated-like composites with the bimodal and highly oriented graphite flake and graphene nanoplatelets[J]. Ceramics International, 2024, 50(18): 33283-33297. [18] Li N, Chang Y, Li M, et al. Enhanced mechanical property by introducing bimodal grains structures in Cu-Ta alloys fabricated by mechanical alloying[J]. Journal of Materials Science and Technology, 2024, 172: 104-112. [19] Mashhadi A, Atrian A, Ghalandari L, et al. Mechanical and microstructural investigation of Zn/Sn multilayered composites fabricated by accumulative roll bonding (ARB) process[J]. Journal of Alloys and Compounds, 2017, 727: 1314-1323. [20] Zeng L F, Gao R, Fang Q F, et al. High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding[J]. Acta Materialia, 2016, 110: 341-351. [21] Du J, Li J, Feng Y, et al. Effect of layered heterogeneous microstructure design on the mechanical behavior of medium carbon steel[J]. Materials and Design, 2022, 221: 110953. [22] Ning H, Wang C, Gao Y, et al. Understanding the deformation behaviours of Mg alloys with dispersed non-basal grain-embedded orientation heterostructures[J]. Acta Materialia, 2024, 267: 119727. [23] 杜旭东. Mg-Al-Ca系合金凝固行为及热裂机理研究[D]. 沈阳工业大学, 2023. [24] 杜宜卓, 郭恩宇. 挤压温度对TC4p/ZK60复合材料组织及性能的影响[J]. 特种铸造及有色合金, 2024, 44(8): 1097-1103. Du Yizhuo, Guo Enyu. Influence of extrusion temperature on microstructure and properties of TC4p/ZK60 composites[J]. Special Casting and Nonferrous Alloys, 2024, 44(8): 1097-1103. [25] 常 海, 徐 超, 胡小石. 累积叠轧纯Mg/ZK60镁合金层状金属复合材料的组织与性能[J]. 复合材料学报, 2019, 36(1): 178-185. Chang Hai, Xu Chao, Hu Xiaoshi. Microstructure evolution and mechanical properties of Mg/ZK60 laminated composite fabricated by accumulated roll-bonding[J]. Acta Materiae Compositae Sinica, 2019, 36(1): 178-185. [26] Zeng L F, Gao R, Fang Q F, et al. High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding[J]. Acta Materialia, 2016, 110: 341-351. [27] Hwang Y M, Hsu H H, Lee H J. Analysis of plastic instability during sandwich sheet rolling[J]. International Journal of Machine Tools and Manufacture, 1996, 36(1): 47-62. [28] Ma X, Huang C, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces[J]. Acta Materialia, 2016, 116: 43-52. [29] Meng Y, Zhang H, Lin B, et al. Microstructure and mechanical properties of the AZ31/GW103K bimetal composite rods fabricated by co-extrusion[J]. Materials Science and Engineering A, 2022, 833: 142578. [30] 唐意智, 何维均, 蒋 斌. 累积叠轧Mg/Ti复合材料的微观组织与力学性能[J]. 材料热处理学报, 2023, 44(10): 59-67. Tang Yizhi, He Weijun, Jiang Bin. Microstructure and mechanical properties of Mg/Ti laminated composites fabricated by accumulative roll bonding[J]. Transactions of Materials and Heat Treatment, 2023, 44(10): 59-67. [31] 杨 然, 宋韶杰, 刘飞龙, 等. 累积叠轧焊Cu/Nb多层材料中的滑移传递研究[J]. 金属学报, 2024-12-18. Yang Ran, Song Shaojie, Liu Feilong, et al. Slip transfer in accumulative roll bonding Cu/Nb multilayer composites[J]. Acta Metallurgica Sinica, 2024-12-18. [32] Alil A, PopovićM, RadetićT, et al. Influence of an accumulative roll bonding (ARB) process on the properties of AA5083 Al-Mg alloy sheets[J]. Metallurgical and Materials Engineering, 2014, 20(4): 285-95. [33] 江 鹏, 李骆宾, 张 可, 等. 累积叠轧制备石墨烯/铝复合材料的组织与性能[J]. 热加工工艺, 2022, 51(22): 68-73. Jiang Peng, Li Luobin, Zhang Ke, et al. Microstructure and properties of graphene/aluminum composites prepared by accumulative roll bonding[J]. Hot Working Technology, 2022, 51(22): 68-73. [34] 管 笛, 曲美晶, 花福安. 累积叠轧温度对AZ31镁合金组织和性能的影响[J]. 金属热处理, 2021, 46(11): 78-83. Guan Di, Qu Meijing, Hua Fuan. Effects of accumulative roll bonding temperature on microstructure and mechanical properties of AZ31 magnesium alloy[J]. Heat Treatment of Metals, 2021, 46(11): 78-83. [35] 贾少伟, 张 郑, 王 文, 等. 超细晶/纳米晶反Hall-Petch变形机制最新研究进展[J]. 材料导报, 2015, 29(23): 114-118. Jia Shaowei, Zhang Zheng, Wang Wen, et al. The current situation of deformation mechanism on inverse Hall-Petch in crystalline material[J]. Materials Reports, 2015, 29(23): 114-118. |