金属热处理 ›› 2025, Vol. 50 ›› Issue (3): 16-24.DOI: 10.13251/j.issn.0254-6051.2025.03.003

• 工艺研究 • 上一篇    下一篇

回火温度对超级马氏体不锈钢组织和力学性能的影响

朱晨辉1, 徐流杰1,2, 谢红申1, 石如星3, 殷立涛3   

  1. 1.河南科技大学 材料科学与工程学院, 河南 洛阳 471000;
    2.河南科技大学 金属材料磨损控制与成型技术国家地方联合工程研究中心, 河南 洛阳 471003;
    3.智能矿山重型装备全国重点实验室, 河南 洛阳 471039
  • 收稿日期:2024-10-08 修回日期:2025-01-16 出版日期:2025-03-25 发布日期:2025-05-14
  • 通讯作者: 徐流杰,教授,博士,E-mail:wmxlj@126.com
  • 作者简介:朱晨辉(1998—),男,硕士研究生,主要研究方向为马氏体不锈钢,E-mail:zhuchenhui339@163.com。
  • 基金资助:
    河南省重点研发专项(231111230400);河南省重大科技专项(221100230200);国家重点研发计划(2022YFB3705300)

Effect of tempering temperature on microstructure and mechanical properties of a super-martensitic stainless steel

Zhu Chenhui1, Xu Liujie1,2, Xie Hongshen1, Shi Ruxing3, Yin Litao3   

  1. 1. School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang Henan 471000, China;
    2. Engineering Research Center of Tribology & Materials Protection, Ministry of Education, Henan University of Science and Technology, Luoyang Henan 471003, China;
    3. State Key Laboratory of Intelligent Mining Heavy Equipment, Luoyang Henan 471039, China
  • Received:2024-10-08 Revised:2025-01-16 Online:2025-03-25 Published:2025-05-14

摘要: 研究了880 ℃淬火、分别在530、580、630 ℃回火后SMSS(00Cr13Ni5Mo)钢的组织和力学性能,利用电子背散射衍射分析(EBSD)和扫描电镜(SEM)分析了回火过程中组织的变化,使用电子万能试验机测试拉伸性能。结果表明,试验钢回火组织由回火马氏体分解成的类铁素体相与少量奥氏体组成。随着回火温度升高,类铁素体相由颗粒状变成条带状最终呈现连续条带状,晶粒尺寸由25.76 μm增大到29.45 μm。当回火温度达到580 ℃时,由于Ni富集导致产生逆变奥氏体,使马氏体的相含量由88.7%降低到75.8%,当回火温度升到630 ℃时,富Ni相中Ni含量过高抑制了逆变奥氏体的产生,致使马氏体的相含量提升到79.6%。随着回火温度升高,逆变奥氏体的变化导致显微硬度和屈服强度先下降后升高(硬度:274.19 HV0.1→239.16 HV0.1→242.45 HV0.1;屈服强度:857.63 MPa→792.91 MPa→823.51 MPa);伸长率先增高后下降(20.67%→22.87%→20.80%),当回火温度为580 ℃时,由于逆变奥氏体的含量最高,钢的塑性最好。

关键词: 超级马氏体不锈钢, 板条马氏体, 逆变奥氏体, 回火, 力学性能

Abstract: Microstructure and mechanical properties of super-martensitic stainless steel SMSS 00Cr13Ni5Mo quenched at 880 ℃ and tempered at different temperatures (530, 580, 630 ℃) were studied. The changes in microstructure during tempering were analyzed using electron backscatter diffraction analysis (EBSD) and scanning electron microscopy (SEM), and the tensile properties were tested using an electronic universal testing machine. The results show that the tempered microstructure of the tested steel consists of a ferrite-like phase derived from the decomposition of tempered martensite, along with a small amount of austenite. As the tempering temperature increases, the ferrite-like phase evolves from a granular to a banded structure, eventually forming continuous bands. The grain size also increases from 25.76 μm to 29.45 μm. When the tempering temperature increases to 580 ℃, Ni enrichment leads to the formation of reversed austenite, reducing the martensite phase content from 88.7% to 75.8%. Further increasing the tempering temperature to 630 ℃ causes excessive Ni content in the Ni-rich phase, which inhibits the formation of reversed austenite, resulting in a recovery of martensite phase content to 79.6%. As the tempering temperature is increased, the change in reversed austenite leads to a decrease in the microhardness and yield strength initially, followed by an increase (hardness: 274.19 HV0.1→239.16 HV0.1→242.45 HV0.1; yield strength: 857.63 MPa→792.91 MPa→823.51 MPa). The elongation first increases, then decreases (20.67%→22.87%→20.80%). When the tempering temperature is 580 ℃, the steel exhibits the highest austenite content, which results in the best plasticity of the tested steel.

Key words: super-martensitic stainless steel, lath martensite, reversed austenite, tempering, mechanical properties

中图分类号: