金属热处理 ›› 2025, Vol. 50 ›› Issue (3): 9-15.DOI: 10.13251/j.issn.0254-6051.2025.03.002

• 工艺研究 • 上一篇    下一篇

时效处理对热挤压态Mg-Gd-Y-Sm-Zr合金组织和性能的影响

兖利鹏1, 孙瑞雪1, 马秉馨1,2, 付靖3, 苏光1, 李全安4, 郑鸿江1   

  1. 1.河南工学院 材料科学与工程学院, 河南 新乡 453003;
    2.河南工学院 新乡材料成形技术与模具重点实验室, 河南 新乡 453003;
    3.河南工学院 机械工程学院, 河南 新乡 453003;
    4.河南科技大学 材料科学与工程学院, 河南 洛阳 471023
  • 收稿日期:2024-10-30 修回日期:2025-01-29 出版日期:2025-03-25 发布日期:2025-05-14
  • 通讯作者: 苏光,教授,硕士,E-mail:suguangxinxiang@163.com
  • 作者简介:兖利鹏(1982—),男,讲师,博士,主要研究方向为高性能耐热镁合金制备和表征,E-mail:yanlipeng0208@126.com。
  • 基金资助:
    国基自然科学基金(52371108);河南省科技攻关项目(232102220091,242102240056);河南工学院博士科研启动金(KQ2426)

Effect of aging on microstructure and properties of hot-extruded Mg-Gd-Y-Sm-Zr alloy

Yan Lipeng1, Sun Ruixue1, Ma Bingxin1,2, Fu Jing3, Su Guang1, Li Quanan4, Zheng Hongjiang1   

  1. 1. School of Materials Science and Engineering, Henan Institute of Technology, Xinxiang Henan 453003, China;
    2. Xinxiang Key Laboratory of Materials Processing Technology and Mould, Henan Institute of Technology, Xinxiang Henan 453003, China;
    3. School of Mechanical Engineering, Henan Institute of Technology, Xinxiang Henan 453003, China;
    4. School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang Henan 471023, China
  • Received:2024-10-30 Revised:2025-01-29 Online:2025-03-25 Published:2025-05-14

摘要: 用扫描电镜(SEM)、透射电镜(TEM)、电子背散射衍射(EBSD)、硬度试验和拉伸试验等研究了时效对热挤压态Mg-8Gd-4Y-1Sm-0.5Zr(GWS841)合金组织和性能的影响。结果表明,热挤压态GWS841合金的峰值硬度时效工艺分别为200 ℃×96 h、225 ℃×24 h和250 ℃×12 h,其中在200 ℃×96 h时效后峰值硬度和抗拉强度达到最大值。在200 ℃时效过程中,在α-Mg基体内稀土原子首先沿着〈12$\bar{1}$0〉α晶向析出并形成黑色衬度条纹β′相,此时处于欠时效态;随着时效时间延长,β′相沿着〈10$\bar{1}$0〉α晶向发生扩展,合金硬度也逐渐增大;时效96 h后,在(11$\bar{2}$0)α、($\bar{1}$2$\bar{1}$0)α和(2$\bar{11}$0)α棱柱面内同时析出β′相,处于峰值时效态;时效120 h后,基体内的β′相长大形成梭状,晶界产生亚微米级的β相,此时处于过时效态。拉伸断裂机制为准解理断裂,断口组织由解理面、撕裂棱和韧窝组成。

关键词: Mg-8Gd-4Y-1Sm-0.5Zr合金, 时效处理, 硬度, 显微组织, 强化机制

Abstract: Effect of aging on the microstructure and properties of hot-extruded Mg-8Gd-4Y-1Sm-0.5Zr (GWS841) alloy was studied by means of scanning electron microscope (SEM), transmission electron microscope (TEM), electron backscatter diffraction (EBSD), hardness test and tensile test. The results show that the hardness of the hot extruded GWS841 alloy reaches the highest after aging at 200 ℃ for 96 h, 225 ℃ for 24 h, and 250 ℃ for 12 h, respectively. The peak hardness and tensile strength reach their maximum values after aging at 200 ℃ for 96 h. During the aging process at 200 ℃, rare earth atoms first precipitate along 〈12$\bar{1}$0〉α crystal direction in α-Mg matrix to form a single black contrast stripe, β′ phase, which is in the under aged state. As the aging time increases, the β′ phase expands along 〈10$\bar{1}$0〉α crystal direction, and the hardness of the alloy gradually increases. After aging for 96 h, β′ phase precipitates simultaneously in the (11$\bar{2}$0)α、($\bar{1}$2$\bar{1}$0)α and (2$\bar{11}$0)α crystal planes, which is in the peak aged state. After aging for 120 h, the β′ phase in the matrix grows and forms a shuttle like shape, and sub-micron β phases are generated at grain boundaries, which is in the overaged state. The tensile fracture mechanism is quasi-cleavage fracture, and the fracture structure consists of cleavage planes, tearing edges, and dimples.

Key words: Mg-8Gd-4Y-1Sm-0.5Zr alloy, aging treatment, hardness, microstructure, strengthening mechanism

中图分类号: