[1]Ayer R, Machmeier P M. Transmission electron microscopy examination of hardening and toughening phenomena in Aermet 100[J]. Metallurgical Transactions A, 1993, 24: 1943-1955. [2]李 志, 赵振业. AerMet100钢的研究与发展[J]. 航空材料学报, 2006, 26(3): 265-270. Li Zhi, Zhao Zhenye. Research and development of AerMet100 steel[J]. Journal of Aeronautical Materials, 2006, 26(3): 265-270. [3]崔 灿, 王向明, 吴 斌, 等. 激光直接沉积成形增材制造技术在飞机起落架上的应用研究[J]. 航空制造技术, 2018, 61(10): 74-79. Cui Can, Wang Xiangming, Wu Bin, et al. Study on application of laser deposited additive manufacturing technology on aircraft undercarriage[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 74-79. [4]王华明, 张凌云, 李 安, 等. 高性能航空金属结构材料及特种涂层激光熔化沉积制备与成形研究进展[J]. 金属热处理, 2008, 33(1): 82-85. Wang Huaming, Zhang Lingyun, Li An, et al. Progress on laser melting deposition processing and manufacturing of advanced aeronautical metallic structural materials and coatings[J]. Heat Treatment of Metals, 2008, 33(1): 82-85. [5]Pragana J P M, Sampaio R F V, Bragança I M F, et al. Hybrid metal additive manufacturing: A state-of-the-art review[J]. Advances in Industrial and Manufacturing Engineering, 2021(2): 100032. [6]Arcella F G, Froes F H. Producing titanium aerospace components from powder using laser forming[J]. The Journal of the Minerals, Metals and Materials Society, 2000, 52: 28-30. [7]Zhu Y Y, Li J, Tian X J, et al. Microstructure and mechanical properties of hybrid fabricated Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy by laser additive manufacturing[J]. Materials Science and Engineering A, 2014, 607: 427-434. [8]Wang Y D, Tang H B, Fang Y L, et al. Microstructure and mechanical properties of hybrid fabricated 1Cr12Ni2WMoVNb steel by laser melting deposition[J]. Chinese Journal of Aeronautics, 2013, 26(2): 481-486. [9]刘丰刚, 林 鑫, 宋 衎, 等. 激光修复300M钢的组织及力学性能研究[J]. 金属学报, 2017, 53(3): 325-334. Liu Fenggang, Lin Xin, Song Kan, et al. Microstructure and mechanical properties of laser forming repaired 300M steel[J]. Acta Metallurgica Sinica, 2017, 53(3): 325-334. [10]王向明, 苏亚东, 吴 斌. 增材技术在飞机结构研制中的应用[J]. 航空制造技术, 2014(22): 16-20. Wang Xiangming, Su Yadong, Wu Bin. Application of additive manufacturing technology on aircraft structure development[J]. Aeronautical Manufacturing Technology, 2014(22): 16-20. [11]颜 敏, 张述泉, 王华明. 激光熔化沉积AerMet100耐蚀超高强度钢的凝固组织及力学性能[J]. 金属学报, 2007, 43(5): 472-476. Yan Min, Zhang Shuquan, Wang Huaming. Solidification microstructure and mechanical properties of corrosion-resistant ultra-high strength steel AerMet100 fabricated by laser melting deposition[J]. Acta Metallurgica Sinica, 2007, 43(5): 472-476. [12]汪 洋, 王 远, 张述泉, 等. 激光熔化沉积AerMet100超高强度钢凝固组织及高温稳定性[J]. 金属热处理, 2011, 36(3): 60-63. Wang Yang, Wang Yuan, Zhang Shuquan, et al. Solidification microstructure and high temperature structural stability of laser deposited ultrahigh strength steel AerMet100[J]. Heat Treatment of Metals, 2011, 36(3): 60-63. [13]冉先喆, 程 昊, 王华明, 等. 激光熔化沉积AerMet100耐蚀超高强度钢的耐蚀性[J]. 材料热处理学报, 2012, 33(12): 126-131. Ran Xianzhe, Cheng Hao, Wang Huaming, et al. Corrosion properties of laser melting-deposited corrosion-resistant ultrahigh strength steel AerMet100[J]. Transactions of Materials and Treatment, 2012, 33(12): 126-131. [14]Cheng H, Liu D, Tang H B, et al. Effect of hot isostatic pressing on fatigue properties of laser melting deposited AerMet100 steel[J]. Journal of Iron and Steel Research International, 2013, 20(11): 79-84. [15]Ran X Z, Liu D, Li A, et al. Microstructure characterization and mechanical behavior of laser additive manufactured ultrahigh-strength AerMet100 steel[J]. Materials Science and Engineering A, 2016, 663: 69-77. [16]崔 灿, 刘 栋, 苏亚东, 等. 热处理对激光直接沉积成形A-100钢基体组织及性能的影响[J]. 航空制造技术, 2017(13): 89-92. Cui Can, Liu Dong, Su Yadong, et al. Effect of heat treatment on microstructure and mechanical property of laser deposited A-100 steel[J]. Aeronautical Manufacturing Technology, 2017(13): 89-92. [17]Ran X Z, Liu D, Li A, et al. Effects of post homogeneity heat treatment processes on microstructure evolution behavior and tensile mechanical properties of laser additive manufactured ultrahigh-strength AerMet100 steel[J]. Materials Science and Engineering A, 2018, 723: 8-21. [18]于梦晓, 李 佳, 李 卓, 等. 热处理对激光增材制造AerMet100超高强度钢动态力学性能的影响[J]. 中国激光, 2020, 47(11): 1102003. Yu Mengxiao, Li Jia, Li Zhuo, et al. Effect of heat treatment on dynamic mechanical properties of AerMet100 ultrahigh strength steel fabricated by laser additive manufacturing[J]. Chinese Journal of Lasers, 2020, 47(11): 1102003. [19]Ran X Z, Zhang S Q, Liu D, et al. Role of microstructural characteristics in combination of strength and fracture toughness of laser additively manufactured ultrahigh-strength AerMet100 steel[J]. Metallurgical and Materials Transactions A, 2021, 52: 1248-1259. [20]Lourenço J M, Sun S D, Sharp K, et al. Fatigue and fracture behavior of laser clad repair of AerMet100 ultra-high strength steel[J]. International Journal of Fatigue, 2016, 85: 18-30. [21]Barr C, Sun S D, Easton M, et al. Influence of macrosegregation on solidification cracking in laser clad ultra-high strength steels[J]. Surface and Coatings Technology, 2018, 340: 126-136. [22]Wang L D, Liu L, Ao C X, et al. Investigation of transformation for ultrahigh strength steel AerMet100[J]. Journal of Materials Science and Technology, 2000, 16(5): 491-494. [23]Shi X H, Zeng W D, Zhao Q Y, et al. Study on the microstructure and mechanical properties of Aermet100 steel at the tempering temperature around 482 ℃[J]. Journal of Alloys and Compounds, 2016, 679: 184-190. |