[1]储志强. 国内外磁控溅射靶材的现状及发展趋势[J]. 金属材料与冶金工程, 2011, 39(4): 44-49. Chu Zhiqiang. Current status and development trend of magnetron sputtering targets at home and abroad[J]. Metal Materials and Metallurgy Engineering, 2011, 39(4): 44-49. [2]李佳君, 刘 浩, 左永刚, 等. 磁控溅射铜膜与基底结合强度的分析研究[J]. 材料研究学报, 2016, 30(8): 634-640. Li Jiajun, Liu Hao, Zuo Yonggang, et al. Analysis and research on the bonding strength of magnetron sputtering copper film and substrate[J]. Chinese Journal of Materials Research, 2016, 30(8): 634-640. [3]Chan K Y, Luo P Q, Zhou Z B, et al. Influence of direct current plasma magnetron sputtering parameters on the material characteristics of polycrystalline copper films[J]. Applied Surface Science, 2008, 255(10): 5186-5190. [4]Lim J W, Choi G S, Zhu Y F. Effect of negative substrate bias voltage on the nucleation and growth of Cu films during the initial stage of ion beam deposition[J]. Metals and Materials International, 2008, 14(3): 381-384. [5]张国君, 马 杰, 安 耿, 等. 靶材热处理温度对磁控溅射Mo薄膜组织和性能的影响[J]. 中国钼业, 2014, 38(6): 36-40. Zhang Guojun, Ma Jie, An Geng, et al. The influence of target heat treatment temperature on the structure and properties of magnetron sputtering Mo film[J]. China Molybdenum Industry, 2014, 38(6): 36-40. [6]张丽民, 张智慧, 左玉婷, 等. 高纯铜靶材微观组织与取向的EBSD分析[J]. 金属热处理, 2020, 45(1): 199-202. Zhang Limin, Zhang Zhihui, Zuo Yuting, et al. EBSD analysis on microstructure and orientation of high purity copper targets[J]. Heat Treatment of Metals, 2020, 45(1): 199-202. [7]穆健刚, 梁俊才, 张凤戈, 等. 钛铝靶材的相结构对涂层的结构和性能的影响[J]. 热加工工艺, 2014, 43(18): 143-146. Mu Jiangang, Liang Juncai, Zhang Fengge, et al. The influence of the phase structure of the titanium aluminum target on the structure and performance of the coating[J]. Hot Working Technology, 2014, 43(18): 143-146. [8]Boydens F, Leroy W, Persoons R, et al. Deposition of thin films by sputtering cold isostatically pressed powder targets: A case study[J]. Physica Status Solidi A, 2012, 209(3): 524-530. [9]杨文灏, 鲍明东, 唐 宾, 等. 表面粗糙度对磁控溅射纯Cu靶材刻蚀区表面形貌及溅射性能的影响[J]. 金属热处理, 2021, 46(8): 230-236. Yang Wenhao, Bao Mingdong, Tang Bin, et al. Influence of surface roughness on surface morphology and sputtering performance of magnetron sputtering etched area of pure Cu target[J]. Treatment of Metals, 2021, 46(8): 230-236. [10]Wang Shuaikang, Yang Wenhao, Wang Yupeng, et al. Effect of target size on target sputter etching morphology and performance[J]. Vacuum, 2022, 201: 111083. [11]Yang Wenhao, Zhao Guohua, Wang Yupeng, et al. Influence of grain size of Cu target on its magnetron sputtering erosion and parameters[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(21): 26181-26188. [12]Westwood W D, Maniv S, Scanlon P J. The current-voltage characteristic of magnetron sputtering systems[J]. Journal of Applied Physics, 1983, 54(12): 6841-6846. [13]Tu Wien. Institute of Applied Physics//Surface Physics//A simple sputter yield calculator[EB/OL]. http://www.iap.tuwien.ac.at/www/surface/sputteryield. [14]高 丽, 花银群, 陈瑞芳. 铜薄膜的直流磁控溅射制备与表征[J]. 微细加工技术, 2008(3): 21-24, 49. Gao Li, Hua Yinqun, Chen Ruifang. Preparation and characterization of copper film by DC magnetron sputtering[J]. Microfabrication Technology, 2008(3): 21-24, 49. [15]郑敏栋, 赵修建, 倪佳苗, 等. 磁控溅射Cu膜结构及电学性能研究[C]//2015年全国玻璃科学技术年会论文专集, 2015: 96-100. [16]Mech K, Kowalik R, Z·abiński P. Cu thin films deposited by DC magnetron sputtering for contact surfaces on electronic components[J]. Archives of Metallurgy and Materials, 2011, 56(4): 903-908. [17]Le M T, Sohn Y U, Lim J W, et al. Effect of sputtering power on the nucleation and growth of Cu films deposited by magnetron sputtering[J]. Materials Transactions, 2010, 51(1): 116-120. [18]Solovyev A A, Oskirko V O, Semenov V A, et al. Comparative study of Cu films prepared by DC, high-power pulsed and burst magnetron sputtering[J]. Journal of Electronic Materials, 2016, 45(8): 4052-4060. |