[1]Zhao J, Jiang Z. Thermomechanical processing of advanced high strength steels[J]. Progress in Materials Science, 2018, 94: 174-242. [2]Zhang Y, Lai X, Zhu P, et al. Lightweight design of automobile component using high strength steel based on dent resistance[J]. Materials & Design, 2006, 27(1): 64-68. [3]Fu L, Fan L, Li Z, et al. Yield behavior associated with stacking faults in a high-temperature annealed ultra-low carbon high manganese steel[J]. Materials Science and Engineering A, 2013, 582: 126-133. [4]张 波, 李 杰, 吴凯迪, 等. 面心立方高熵合金中层错能对变形机制的影响[J]. 金属热处理, 2023, 48(8): 225-234. Zhang Bo, Li Jie, Wu Kaidi, et al. Effect of stacking fault energy on deformation mechanism in face centered cubic high-entropy alloy[J]. Heat Treatment of Metals, 2023, 48(8): 225-234. [5]Cai W, Sun C, Zhang H, et al. Delving into the intrinsic co-relation between microstructure and mechanical behavior of fine-/ultrafine-grained TWIP steels via TEM and in-situ EBSD observation[J]. Materials Characterization, 2024, 210: 113780. [6]Pierce D T, Jiménez J A, Bentley J, et al. The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation[J]. Acta Materialia, 2015, 100: 178-190. [7]彭 仙, 朱定一, 胡真明, 等. 碳含量对Fe-Mn-Cu-C系TWIP钢组织和力学性能的影响[J]. 钢铁, 2013, 48(5): 55-61. Peng Xian, Zhu Dingyi, Hu Zhenming, et al. Effect of carbon content on the organization and mechanical properties of Fe-Mn-Cu-C system TWIP steel[J]. Iron and Steel, 2013, 48(5): 55-61. [8]Gao J, Jiang S, Zhang H, et al. Facile route to bulk ultrafine-grain steels for high strength and ductility[J]. Nature, 2021, 590(7845): 262-267. [9]Peng X, Zhu D, Hu Z, et al. Stacking fault energy and tensile deformation behavior of high-carbon twinning-induced plasticity steels: Effect of Cu addition[J]. Materials & Design, 2013, 45: 518-523. [10]Bai Y, Kitamura H, Gao S, et al. Unique transition of yielding mechanism and unexpected activation of deformation twinning in ultrafine grained Fe-31Mn-3Al-3Si alloy[J]. Scientific Reports, 2021, 11(1): 15870. [11]支辉辉. Fe-Mn-C-(-Al)系TWIP钢的微观组织演化和力学行为研究[D]. 北京: 北京科技大学, 2020. Zhi Huihui. Microstructure evolution and mechanical behavior of Fe-Mn-C(-Al) twinning-induced plasticity (TWIP) steels[D]. Beijing: University of Science and Technology Beijing, 2020. [12]Oh H S, Biggs K, Güvenç O, et al. In-situ investigation of strain partitioning and microstructural strain path development up to and beyond necking[J]. Acta Materialia, 2021, 215: 117023. [13]Curtze S, Kuokkala V T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate[J]. Acta Materialia, 2010, 58(15): 5129-5141. [14]陈庆勇, 李春福, 宋开红, 等. TWIP钢在不同温度变形的加工硬化行为[J]. 金属热处理, 2012, 37(7): 110-113. Chen Qingyong, Li Chunfu, Song Kaihong, et al. Temperature dependence of strain hardening behavior of TWIP steel [J]. Heat Treatment of Metals, 2012, 37(7): 110-113. [15]Chen Z, Bong H J, Li D, et al. The elastic-plastic transition of metals[J]. International Journal of Plasticity, 2016, 83: 178-201. [16]Gu X, Xu Y, Peng F, et al. Role of martensite/austenite constituents in novel ultra-high strength TRIP-assisted steels subjected to non-isothermal annealing[J]. Materials Science and Engineering A, 2019, 754: 318-329. [17]Moor E D, Speer J G, Matlock D K, et al. Effect of carbon and manganese on the quenching and partitioning response of CMnSi steels[J]. ISIJ International, 2011, 51(1): 137-144. [18]许大杨, 陈婉琦, 万继方, 等. 时效温度对SLM 18Ni300马氏体时效钢显微组织和力学性能的影响[J]. 金属热处理, 2023, 48(2): 144-150. Xu Dayang, Chen Wanqi, Wan Jifang, et al. Effect of aging temperature on microstructure and mechanical properties of SLM 18Ni300 maraging steel[J]. Heat Treatment of Metals, 2023, 48(2): 144-150. [19]Arlazarov A, Bouaziz O, Hazotte A, et al. Characterization and modeling of manganese effect on strength and strain hardening of martensitic carbon steels[J]. ISIJ International, 2013, 53(6): 1076-1080. [20]Sohn S S, Kwiatkowski Da Silva A, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion[J]. Advanced Materials, 2019, 31(8): 1807142. [21]邢振强, 庞 景, 张宏伟, 等. 冷轧、退火和时效对Fe50Ni25Cr15Al10高熵合金组织和性能的影响[J]. 金属热处理, 49(5): 118-123. Xing Zhenqiang, Pang Jing, Zhang Hongwei, et al. Effect of cold rolling, anneding and aging to microstructure and properties of Fe50Ni25Cr15Al10 high entropy alloy [J]. Heat Treatment of Metals, 2024, 49(5): 118-23. [22]Zhang K, Li Z, Sun X, et al. Development of Ti-V-Mo complex microalloyed hot-rolled 900-MPa-grade high-strength steel[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(5): 641-648. [23]Kim S, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility[J]. Nature, 2015, 518: 77-79. [24]Hwang S, Park M, Bai Y, et al. Mesoscopic nature of serration behavior in high-Mn austenitic steel[J]. Acta Materialia, 2021, 205: 116543. [25]Tian Y Z, Bai Y, Zhao L J, et al. A novel ultrafine-grained Fe22Mn0.6C TWIP steel with superior strength and ductility[J]. Materials Characterization, 2017, 126: 74-80. [26]代永娟, 武祥祥, 李佳坤, 等. 退火温度对Fe-24.38Mn-0.44C TWIP钢组织性能的影响[J]. 金属热处理, 2022, 47(2): 146-152. Dai Yongjuan, Wu Xiangxiang, Li Jiakun, et al. Effect of annealing temperature on microstructure and properties of Fe-24.38Mn-0.44C TWIP steel[J]. Heat Treatment of Metals, 2022, 47(2): 146-152. [27]De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels[J]. Acta Materialia, 2018, 142: 283-362. [28]Punyafu J S, Hwang S K, Ihara S, et al. Microstructural factors dictating the initial plastic deformation behavior of an ultrafine-grained Fe-22Mn-0.6C TWIP steel[J]. Materials Science and Engineering A, 2023, 862: 144-156. [29]Zhi H, Zhang C, Antonov S, et al. Investigations of dislocation-type evolution and strain hardening during mechanical twinning in Fe-22Mn-0.6C twinning-induced plasticity steel[J]. Acta Materialia, 2020, 195: 371-382. |